2,712 research outputs found
Duality in Fuzzy Sigma Models
Nonlinear `sigma' models in two dimensions have BPS solitons which are
solutions of self- and anti-self-duality constraints. In this paper, we find
their analogues for fuzzy sigma models on fuzzy spheres which were treated in
detail by us in earlier work. We show that fuzzy BPS solitons are quantized
versions of `Bott projectors', and construct them explicitly. Their
supersymmetric versions follow from the work of S. Kurkcuoglu.Comment: Latex, 9 pages; misprints correcte
Non-Pauli Transitions From Spacetime Noncommutativity
There are good reasons to suspect that spacetime at Planck scales is
noncommutative. Typically this noncommutativity is controlled by fixed
"vectors" or "tensors" with numerical entries. For the Moyal spacetime, it is
the antisymmetric matrix . In approaches enforcing Poincar\'e
invariance, these deform or twist the method of (anti-)symmetrization of
identical particle state vectors. We argue that the earth's rotation and
movements in the cosmos are "sudden" events to Pauli-forbidden processes. They
induce (twisted) bosonic components in state vectors of identical spinorial
particles in the presence of a twist. These components induce non-Pauli
transitions. From known limits on such transitions, we infer that the energy
scale for noncommutativity is . This suggests a
new energy scale beyond Planck scale.Comment: 11 pages, 1 table, Slightly revised for clarity
Topology Change for Fuzzy Physics: Fuzzy Spaces as Hopf Algebras
Fuzzy spaces are obtained by quantizing adjoint orbits of compact semi-simple
Lie groups. Fuzzy spheres emerge from quantizing S^2 and are associated with
the group SU(2) in this manner. They are useful for regularizing quantum field
theories and modeling spacetimes by non-commutative manifolds. We show that
fuzzy spaces are Hopf algebras and in fact have more structure than the latter.
They are thus candidates for quantum symmetries. Using their generalized Hopf
algebraic structures, we can also model processes where one fuzzy space splits
into several fuzzy spaces. For example we can discuss the quantum transition
where the fuzzy sphere for angular momentum J splits into fuzzy spheres for
angular momenta K and L.Comment: LaTeX, 13 pages, v3: minor additions, added references, v4: corrected
typos, to appear in IJMP
Bosonic Description of Spinning Strings in Dimensions
We write down a general action principle for spinning strings in 2+1
dimensional space-time without introducing Grassmann variables. The action is
written solely in terms of coordinates taking values in the 2+1 Poincare group,
and it has the usual string symmetries, i.e. it is invariant under a)
diffeomorphisms of the world sheet and b) Poincare transformations. The system
can be generalized to an arbitrary number of space-time dimensions, and also to
spinning membranes and p-branes.Comment: Latex, 12 page
- …
