58 research outputs found

    De novo germ-line mutation of APC gene in periampullary carcinoma with familial adenomatous polyps – A novel familial case report in South India

    Get PDF
    AbstractPeriampullary carcinoma is a malignant tumour arising from the ampulla of vater. Adenomatous polyposis coli (APC) gene has a key role in stabilizing β-catenin pathway, in which hypermethylation in APC gene could lead to proteasome degradation of β-catenin. The aim of this case report is to identify the APC gene mutation and its influence on β-catenin pathway in patient with periampullary carcinoma. A 51-year-old woman was diagnosed with yellow discolouration of sclera, passing deep yellow coloured urine and pruritus. A family history of ovarian cancer had been reported in her mother. Her radiological, pathological and laboratory examination confirmed periampullary carcinoma. She underwent whipple's pancreaticoduodenectomy, and the histopathology of the resected specimen showed a well differentiated adenocarcinoma involving the ampulla of vater. Further, the tumour region was subjected to genetic screening by polymerase chain reaction – restriction fragment length polymorphism (PCR-RFLP), cytogenetic analyses such as karyotyping and immunohistochemical techniques. These results showed non-sense mutation in APC gene at codon 1309, chromosomal alterations at 5q21 and irregular accumulation of β-catenin in nuclear membrane. The family history revealed a strong association of ovarian cancer (maternal) with a similar APC gene mutation. We conclude that periampullary carcinoma patient exhibit FAP due to de novo germ-line mutation of APC gene that engenders an inactivation of β-catenine/TCF mediated transcription function, which is linked with a family history of ovarian cancer

    Misuse of Cardiac Lipid upon Exposure to Toxic Trace Elements—A Focused Review

    Get PDF
    Funding Information: Ricardo Lagoa acknowledges research support by the Applied Molecular Biosciences Unit-UCIBIO which is financed by national funds from FCT–Foundation for Science and Technology (UIDP/04378/2020 and UIDB/04378/2020). Publisher Copyright: © 2022 by the authors.Heavy metals and metalloids like cadmium, arsenic, mercury, and lead are frequently found in the soil, water, food, and atmosphere; trace amounts can cause serious health issues to the human organism. These toxic trace elements (TTE) affect almost all the organs, mainly the heart, kidney, liver, lungs, and the nervous system, through increased free radical formation, DNA damage, lipid peroxidation, and protein sulfhydryl depletion. This work aims to advance our understanding of the mechanisms behind lipid accumulation via increased free fatty acid levels in circulation due to TTEs. The increased lipid level in the myocardium worsens the heart function. This dysregulation of the lipid metabolism leads to damage in the structure of the myocardium, inclusive fibrosis in cardiac tissue, myocyte apoptosis, and decreased contractility due to mitochondrial dysfunction. Additionally, it is discussed herein how exposure to cadmium decreases the heart rate, contractile tension, the conductivity of the atrioventricular node, and coronary flow rate. Arsenic may induce atherosclerosis by increasing platelet aggregation and reducing fibrinolysis, as exposure interferes with apolipoprotein (Apo) levels, resulting in the rise of the Apo-B/Apo-A1 ratio and an elevated risk of acute cardiovascular events. Concerning mercury and lead, these toxicants can cause hypertension, myocardial infarction, and carotid atherosclerosis, in association with the generation of free radicals and oxidative stress. This review offers a complete overview of the critical factors and biomarkers of lipid and TTE-induced cardiotoxicity useful for developing future protective interventions.publishersversionpublishe

    A cooperativity between virus and bacteria during respiratory infections

    Get PDF
    Respiratory tract infections remain the leading cause of morbidity and mortality worldwide. The burden is further increased by polymicrobial infection or viral and bacterial co-infection, often exacerbating the existing condition. Way back in 1918, high morbidity due to secondary pneumonia caused by bacterial infection was known, and a similar phenomenon was observed during the recent COVID-19 pandemic in which secondary bacterial infection worsens the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) condition. It has been observed that viruses paved the way for subsequent bacterial infection; similarly, bacteria have also been found to aid in viral infection. Viruses elevate bacterial infection by impairing the host’s immune response, disrupting epithelial barrier integrity, expression of surface receptors and adhesion proteins, direct binding of virus to bacteria, altering nutritional immunity, and effecting the bacterial biofilm. Similarly, the bacteria enhance viral infection by altering the host’s immune response, up-regulation of adhesion proteins, and activation of viral proteins. During co-infection, respiratory bacterial and viral pathogens were found to adapt and co-exist in the airways of their survival and to benefit from each other, i.e., there is a cooperative existence between the two. This review comprehensively reviews the mechanisms involved in the synergistic/cooperativity relationship between viruses and bacteria and their interaction in clinically relevant respiratory infections

    Nano-biotechnology in tumour and cancerous disease: A perspective review

    Get PDF
    In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) del Gobierno de Canarias, Grant/Award Number: Project ProID2020010134; Fundación CajaCanarias, Grant/Award Number: Project 2019SP43; State Plan for Scientific, Technical Research and Innovation 2021–2023 from the Spanish Ministry of Science and Innovation, Grant/Award Number: ProjectPLEC2022-009507Peer reviewe

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    An overview about neurological diseases in India – A theranostics approach

    No full text
    With the current global population expansion and increasing life expectancy, more people are living in their later years, when neurological issues are most common. Both environmental and geographical factors contribute to the incidence of various neurological diseases (NDs) in India. These diseases involve the gradual or complete loss of structure and function of neurons, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), epilepsy, stroke, and amyotrophic lateral sclerosis (ALS). The exact cause of these illnesses is still unknown in medicine. Still, it may be linked to protein deterioration, oxidative stress, inflammation, environmental factors, mitochondrial deficiencies, familial history, and abnormal protein build-up. In this review, we have discussed briefly the pathophysiology of various neurological diseases from Indian studies as well as possible diagnostic markers, drugs used, traditional Indian medicinal plants, and alternative therapeutic approaches for detecting and treating these NDs

    Mixture of betel leaf, areca nut and tobacco chewing is a risk factor for cytogenetic damage in construction workers from south India

    No full text
    Aim: To determine the cytogenetic effect of betel leaf, areca nut and tobacco mixture usage among female construction workers in Tamilnadu, Southern India. Methods: Totally 236 buccal cells and blood samples were collected from 80 betel quid users and 76 users with tobacco snuffing habit which were compared with 80 healthy subjects. Peripheral blood leukocyte cultures were analyzed for chromosomal aberrations (CA) and exfoliated cells from the buccal mucosa were examined for micronucleus (MN). Results: Statistically significant (p<0.01) increase in CA and MN were observed in users with snuffing habit when compared to users without snuffing habit and controls as confirmed by chi-square test. Therefore, specific biomarkers on cytogenetic endpoints might help in planning precautionary measures to reduce oral cancer risks. Conclusions: The present study can be concluded that a mixture of betel quid, areca nut and tobacco chewing/snuffing is unsafe for oral health. The genotoxic effect of smokeless tobacco should be considered in addition to other known hazards for assessing health risks
    corecore