50 research outputs found

    Mixed spatial and movement representations in the primate posterior parietal cortex

    Get PDF
    The posterior parietal cortex (PPC) of humans and non-human primates plays a key role in the sensory and motor transformations required to guide motor actions to objects of interest in the environment. Despite decades of research, the anatomical and functional organization of this region is still a matter of contention. It is generally accepted that specialized parietal subregions and their functional counterparts in the frontal cortex participate in distinct segregated networks related to eye, arm and hand movements. However, experimental evidence obtained primarily from single neuron recording studies in non-human primates has demonstrated a rich mixing of signals processed by parietal neurons, calling into question ideas for a strict functional specialization. Here, we present a brief account of this line of research together with the basic trends in the anatomical connectivity patterns of the parietal subregions. We review, the evidence related to the functional communication between subregions of the PPC and describe progress towards using parietal neuron activity in neuroprosthetic applications. Recent literature suggests a role for the PPC not as a constellation of specialized functional subdomains, but as a dynamic network of sensorimotor loci that combine multiple signals and work in concert to guide motor behavior

    Open access resource for cellular-resolution analyses of corticocortical connectivity in the marmoset monkey

    Get PDF
    Understanding the principles of neuronal connectivity requires tools for efficient quantification and visualization of large datasets. The primate cortex is particularly challenging due to its complex mosaic of areas, which in many cases lack clear boundaries. Here, we introduce a resource that allows exploration of results of 143 retrograde tracer injections in the marmoset neocortex. Data obtained in different animals are registered to a common stereotaxic space using an algorithm guided by expert delineation of histological borders, allowing accurate assignment of connections to areas despite interindividual variability. The resource incorporates tools for analyses relative to cytoarchitectural areas, including statistical properties such as the fraction of labeled neurons and the percentage of supragranular neurons. It also provides purely spatial (parcellation-free) data, based on the stereotaxic coordinates of 2 million labeled neurons. This resource helps bridge the gap between high-density cellular connectivity studies in rodents and imaging-based analyses of human brains

    Deficits in visuo-spatial working memory, inhibition and oculomotor control in boys with ADHD and their non-affected brothers.

    Get PDF
    Few studies have assessed visuo-spatial working memory and inhibition in attention-deficit/hyperactivity disorder (ADHD) by recording saccades and consequently little additional knowledge has been gathered on oculomotor functioning in ADHD. Moreover, this is the first study to report the performance of non-affected siblings of children with ADHD, which may shed light on the familiality of deficits. A total of 14 boys with ADHD, 18 non-affected brothers, and 15 control boys aged 7-14 years, were administered a memory-guided saccade task with delays of three and seven seconds. Familial deficits were found in accuracy of visuo-spatial working memory, percentage of anticipatory saccades, and tendency to overshoot saccades relative to controls. These findings suggest memory-guided saccade deficits may relate to a familial predisposition for ADHD

    Recurrent Ischemic Stroke and Bleeding in Patients With Atrial Fibrillation Who Suffered an Acute Stroke While on Treatment With Nonvitamin K Antagonist Oral Anticoagulants: The RENO-EXTEND Study

    Get PDF
    Background: In patients with atrial fibrillation who suffered an ischemic stroke while on treatment with nonvitamin K antagonist oral anticoagulants, rates and determinants of recurrent ischemic events and major bleedings remain uncertain. Methods: This prospective multicenter observational study aimed to estimate the rates of ischemic and bleeding events and their determinants in the follow-up of consecutive patients with atrial fibrillation who suffered an acute cerebrovascular ischemic event while on nonvitamin K antagonist oral anticoagulant treatment. Afterwards, we compared the estimated risks of ischemic and bleeding events between the patients in whom anticoagulant therapy was changed to those who continued the original treatment. Results: After a mean follow-up time of 15.0±10.9 months, 192 out of 1240 patients (15.5%) had 207 ischemic or bleeding events corresponding to an annual rate of 13.4%. Among the events, 111 were ischemic strokes, 15 systemic embolisms, 24 intracranial bleedings, and 57 major extracranial bleedings. Predictive factors of recurrent ischemic events (strokes and systemic embolisms) included CHA2DS2-VASc score after the index event (odds ratio [OR], 1.2 [95% CI, 1.0–1.3] for each point increase; P=0.05) and hypertension (OR, 2.3 [95% CI, 1.0–5.1]; P=0.04). Predictive factors of bleeding events (intracranial and major extracranial bleedings) included age (OR, 1.1 [95% CI, 1.0–1.2] for each year increase; P=0.002), history of major bleeding (OR, 6.9 [95% CI, 3.4–14.2]; P=0.0001) and the concomitant administration of an antiplatelet agent (OR, 2.8 [95% CI, 1.4–5.5]; P=0.003). Rates of ischemic and bleeding events were no different in patients who changed or not changed the original nonvitamin K antagonist oral anticoagulants treatment (OR, 1.2 [95% CI, 0.8–1.7]). Conclusions: Patients suffering a stroke despite being on nonvitamin K antagonist oral anticoagulant therapy are at high risk of recurrent ischemic stroke and bleeding. In these patients, further research is needed to improve secondary prevention by investigating the mechanisms of recurrent ischemic stroke and bleeding

    Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating

    Get PDF
    Eye movements create an ever-changing image of the world on the retina. In particular, frequent saccades call for a compensatory mechanism to transform the changing visual information into a stable percept. To this end, the brain presumably uses internal copies of motor commands. Electrophysiological recordings of visual neurons in the primate lateral intraparietal cortex, the frontal eye fields, and the superior colliculus suggest that the receptive fields (RFs) of special neurons shift towards their post-saccadic positions before the onset of a saccade. However, the perceptual consequences of these shifts remain controversial. We wanted to test in humans whether a remapping of motion adaptation occurs in visual perception

    ICTs Supportive and Therapeutic Contribution in Psychoemotional Disorders in Childhood and Adolescence

    No full text
    This paper aims at reviewing the supportive and therapeutic contribution of ICTs on the most common psychoemotional disorders of childhood and adolescence. The various approaches to classifying behavioral and emotional dysregulations in children and adolescents have been reviewed and the boundaries between normative variation and clinically significant presentations have been determined. Furthermore, we present the major categories of mental illnesses in children and adolescents investigating the etiology, the diagnostic criteria, the epidemiology and treatments by critically reviewing the outcomes of relevant studies. The findings indicate that significant steps have been made in this field, but it is vital to underline the need for more extended investigation in school aged children and adolescents for this purpose

    ICTs Supportive and Therapeutic Contribution in Psychoemotional Disorders in Childhood and Adolescence

    No full text
    This paper aims at reviewing the supportive and therapeutic contribution of ICTs on the most common psychoemotional disorders of childhood and adolescence. The various approaches to classifying behavioral and emotional dysregulations in children and adolescents have been reviewed and the boundaries between normative variation and clinically significant presentations have been determined. Furthermore, we present the major categories of mental illnesses in children and adolescents investigating the etiology, the diagnostic criteria, the epidemiology and treatments by critically reviewing the outcomes of relevant studies. The findings indicate that significant steps have been made in this field, but it is vital to underline the need for more extended investigation in school aged children and adolescents for this purpose.</p

    Cortical Connectivity Suggests a Role in Limb Coordination for Macaque Area PE of the Superior Parietal Cortex

    No full text
    In macaques, superior parietal lobule area 5 has been described as occupying an extensive region, which includes the caudal half of the postcentral convexity as well as the medial bank of the intraparietal sulcus. Modern neuroanatomical methods have allowed the identification of various areas within this region. In the present study, we investigated the corticocortical afferent projections of one of these subdivisions, area PE. Our results demonstrate that PE, defined as a single architectonic area that contains a topographicmapof the body, forms specific connections with somatic and motor fields. Thus, PE receives major afferents from parietal areas, mainly area 2, PEc, several areas in the medial bank of the intraparietal sulcus, opercular areas PGop/PFop, and the retroinsular area, frontal afferents from the primary motor cortex, the supplementary motor area, and the caudal subdivision of dorsal premotor cortex, as well as afferents from cingulate areas PEci, 23, and 24. The presence and relative strength of these connections depend on the location of injection sites, so that lateral PE receives preferential input from anterior sectors of the medial bank of intraparietal sulcus and from the ventral premotor cortex, whereas medial PE forms denser connections with area PEc and motor fields. In contrast with other posterior parietal areas, there are no projections to PE from occipital or prefrontal cortices. Overall, the sensory and motor afferents to PE are consistent with functions in goal-directed movement but also hint at a wider variety of motor coordination roles
    corecore