8,642 research outputs found

    Strong coupling constant from bottomonium fine structure

    Get PDF
    From a fit to the experimental data on the bbˉb\bar{b} fine structure, the two-loop coupling constant is extracted. For the 1P state the fitted value is αs(μ1)=0.33±0.01(exp)±0.02(th)\alpha_s(\mu_1) = 0.33 \pm 0.01(exp)\pm 0.02 (th) at the scale μ1=1.8±0.1\mu_1 = 1.8 \pm 0.1 GeV, which corresponds to the QCD constant Λ(4)(2−loop)=338±30\Lambda^{(4)}(2-loop) = 338 \pm 30 MeV (n_f = 4) and αs(MZ)=0.119±0.002.Forthe2Pstatethevalue\alpha_s(M_Z) = 0.119 \pm 0.002. For the 2P state the value \alpha_s(\mu_2) = 0.40 \pm 0.02(exp)\pm 0.02(th)atthescale at the scale \mu_2 = 1.02 \pm 0.2GeVisextracted,whichissignificantlylargerthaninthepreviousanalysisofFulcher(1991)andHalzen(1993),butabout30smallerthanthevaluegivenbystandardperturbationtheory.Thisvalue GeV is extracted, which is significantly larger than in the previous analysis of Fulcher (1991) and Halzen (1993), but about 30% smaller than the value given by standard perturbation theory. This value \alpha_s(1.0) \approx 0.40canbeobtainedintheframeworkofthebackgroundperturbationtheory,thusdemonstratingthefreezingof can be obtained in the framework of the background perturbation theory, thus demonstrating the freezing of \alpha_s.Therelativisticcorrectionsto. The relativistic corrections to \alpha_s$ are found to be about 15%.Comment: 18 pages LaTe

    The leptonic widths of high ψ\psi-resonances in unitary coupled-channel model

    Full text link
    The leptonic widths of high ψ\psi-resonances are calculated in a coupled-channel model with unitary inelasticity, where analytical expressions for mixing angles between (n+1)\,^3S_1 and n\,^3D_1 states and probabilities ZiZ_i of the ccˉc\bar c component are derived. Since these factors depend on energy (mass), different values of mixing angles θ(ψ(4040))=27.7∘\theta(\psi(4040))=27.7^\circ and θ(ψ(4160))=29.5∘\theta(\psi(4160))=29.5^\circ, Z1 (ψ(4040))=0.76Z_1\,(\psi(4040))=0.76, and Z2 (ψ(4160))=0.62Z_2\,(\psi(4160))=0.62 are obtained. It gives the leptonic widths Γee(ψ(4040))=Z1 1.17=0.89\Gamma_{ee}(\psi(4040))=Z_1\, 1.17=0.89~keV, Γee(ψ(4160))=Z2 0.76=0.47\Gamma_{ee}(\psi(4160))=Z_2\, 0.76=0.47~keV in good agreement with experiment. For ψ(4415)\psi(4415) the leptonic width Γee(ψ(4415))= 0.55\Gamma_{ee}(\psi(4415))=~0.55~keV is calculated, while for the missing resonance ψ(4510)\psi(4510) we predict M(ψ(4500))=(4515±5)M(\psi(4500))=(4515\pm 5)~MeV and Γee(ψ(4510))≅0.50\Gamma_{ee}(\psi(4510)) \cong 0.50~keV.Comment: 10 pages, 6 references corrected, some new material adde

    Higher excitations of the DD and DsD_s mesons

    Get PDF
    The masses of higher D(nL)D(nL) and Ds(nL)D_s(nL) excitations are shown to decrease due to the string contribution, originating from the rotation of the QCD string itself: it lowers the masses by 45 MeV for L=2(n=1)L=2 (n=1) and by 65 MeV for L=3(n=1)L=3 (n=1). An additional decrease ∼100\sim 100 MeV takes place if the current mass of the light (strange) quark is used in a relativistic model. For Ds(1 3D3)D_s(1\,{}^3D_3) and Ds(2P1H)D_s(2P_1^H) the calculated masses agree with the experimental values for Ds(2860)D_s(2860) and Ds(3040)D_s(3040), and the masses of D(2 1S0)D(2\,{}^1S_0), D(2 3S1)D(2\,{}^3S_1), D(1 3D3)D(1\,{}^3D_3), and D(1D2)D(1D_2) are in agreement with the new BaBar data. For the yet undiscovered resonances we predict the masses M(D(2 3P2))=2965M(D(2\,{}^3P_2))=2965 MeV, M(D(2 3P0))=2880M(D(2\,{}^3P_0))=2880 MeV, M(D(1 3F4))=3030M(D(1\,{}^3F_4))=3030 MeV, and M(Ds(1 3F2))=3090M(D_s(1\,{}^3F_2))=3090 MeV. We show that for L=2,3L=2,3 the states with jq=l+1/2j_q=l+1/2 and jq=l−1/2j_q=l-1/2 (J=lJ=l) are almost completely unmixed (ϕ≃−1∘\phi\simeq -1^\circ), which implies that the mixing angles θ\theta between the states with S=1 and S=0 (J=LJ=L) are θ≈40∘\theta\approx 40^\circ for L=2 and ≈42∘\approx 42^\circ for L=3.Comment: 22 pages, no figures, 4 tables Two references and corresponding discussion adde

    The ccˉc\bar c interaction above threshold and the radiative decay X(3872)→J/ψγX(3872)\rightarrow J/\psi\gamma

    Full text link
    Radiative decays of X(3872)X(3872) are studied in single-channel approximation (SCA) and in the coupled-channel (CC) approach, where the decay channels DDˉ∗D\bar D^* are described with the string breaking mechanism. In SCA the transition rate Γ~2=Γ(2 3P1→ψγ)=71.8\tilde{\Gamma}_2=\Gamma(2\,{}^3P_1 \rightarrow \psi\gamma)=71.8~keV and large Γ~1=Γ(2 3P1→J/ψγ)=85.4\tilde{\Gamma}_1=\Gamma(2\,{}^3P_1\rightarrow J/\psi\gamma)=85.4~keV are obtained, giving for their ratio the value Rψγ~=Γ~2Γ~1=0.84\tilde{R_{\psi\gamma}}=\frac{\tilde{\Gamma}_2}{\tilde{\Gamma}_1}=0.84. In the CC approach three factors are shown to be equally important. First, the admixture of the 1 3P11\,{}^3P_1 component in the normalized wave function of X(3872)X(3872) due to the CC effects. Its weight cX(ER)=0.200±0.015c_{\rm X}(E_{\rm R})=0.200\pm 0.015 is calculated. Secondly, the use of the multipole function g(r)g(r) instead of rr in the overlap integrals, determining the partial widths. Thirdly, the choice of the gluon-exchange interaction for X(3872)X(3872), as well as for other states above threshold. If for X(3872)X(3872) the gluon-exchange potential is taken the same as for low-lying charmonium states, then in the CC approach Γ1=Γ(X(3872)→J/ψγ)∼3\Gamma_1= \Gamma(X(3872)\rightarrow J/\psi\gamma) \sim 3~keV is very small, giving the large ratio Rψγ=B(X(3872)→ψ(2S)γ)B(X(3872)→J/ψγ)≫1.0R_{\psi\gamma}=\frac{\mathcal{B}(X(3872)\rightarrow \psi(2S)\gamma)}{\mathcal{B}(X(3872)\rightarrow J/\psi\gamma)}\gg 1.0. Arguments are presented why the gluon-exchange interaction may be suppressed for X(3872)X(3872) and in this case Γ1=42.7\Gamma_1=42.7~keV, Γ2=70.5\Gamma_2= 70.5~keV, and Rψγ=1.65R_{\psi\gamma}=1.65 are predicted for the minimal value cX(min)=0.185c_{\rm X}({\rm min})=0.185, while for the maximal value cX=0.215c_{\rm X}=0.215 we obtained Γ1=30.8\Gamma_1=30.8~keV, Γ2=73.2\Gamma_2=73.2~keV, and Rψγ=2.38R_{\psi\gamma}=2.38, which agrees with the LHCb data.Comment: 12 pages, no figure

    Pauli-Potential and Green Function Monte-Carlo Method for Many-Fermion Systems

    Get PDF
    The time evolution of a many-fermion system can be described by a Green's function corresponding to an effective potential, which takes anti-symmetrization of the wave function into account, called the Pauli-potential. We show that this idea can be combined with the Green's Function Monte Carlo method to accurately simulate a system of many non-relativistic fermions. The method is illustrated by the example of systems of several (2-9) fermions in a square well.Comment: 12 pages, LaTeX, 4 figure

    The Hyperfine Splittings in Bottomonium and the Bq(q=n,s,c)B_q (q=n,s,c) Mesons

    Get PDF
    A universal description of the hyperfine splittings (HFS) in bottomonium and the Bq(q=n,s,c)B_q (q=n,s,c) mesons is obtained with a universal strong coupling constant αs(μ)=0.305(2)\alpha_s(\mu)=0.305(2) in a spin-spin potential. Other characteristics are calculated within the Field Correlator Method, taking the freezing value of the strong coupling independent of nfn_f. The HFS M(B∗)−M(B)=45.3(3)M(B^*)- M(B)=45.3(3) MeV, M(Bs∗)−M(Bs)=46.5(3)M(B_s^*) - M(B_s)=46.5(3) MeV are obtained in full agreement with experiment both for nf=3n_f=3 and nf=4n_f=4. In bottomonium, M(Υ(9460))−M(ηb)=70.0(4)M(\Upsilon(9460))- M(\eta_b)=70.0(4) MeV for nf=5n_f=5 agrees with the BaBar data, while a smaller HFS, equal to 64(1) MeV, is obtained for nf=4n_f=4. We predict HFS M(Υ(2S))−M(ηb(2S))=36(1)M(\Upsilon(2S))-M(\eta_b(2S))=36(1) MeV, M(Υ(3S))−M(η(3S))=27(1)M(\Upsilon(3S))- M(\eta(3S))=27(1) MeV, and M(Bc∗)−M(Bc)=57.5(10)M(B_c^*) - M(B_c)= 57.5(10) MeV, which gives M(Bc∗)=6334(1)M(B_c^*)=6334(1) MeV, M(Bc(21S0))=6865(5)M(B_c(2 {}^1S_0))=6865(5) MeV, and M(Bc∗(2S3S1))=6901(5)M(B_c^*(2S {}^3S_1))=6901(5) MeV.Comment: 5 pages revtex

    Dominant spin-orbit effects in radiative decays {Υ(3S→γχbJ(1P))\Upsilon(3S\rightarrow \gamma\chi_{bJ}(1P))}}

    Get PDF
    We show that there are two reasons why the partial width for the transition Γ1(Υ(3S)→γχb1(1P))\Gamma_1(\Upsilon(3S)\rightarrow \gamma\chi_{b1}(1P)) is suppressed. Firstly, the spin-averaged matrix element (m.e.) I(3S∣r∣1PJ)ˉ\bar{I(3S|r|1P_J)} is small, being equal to 0.023 GeV−1^{-1} in our relativistic calculations. Secondly, the spin-orbit splittings produce relatively large contributions, giving I(3S∣r∣1P2)=0.066I(3S|r|1P_2)=0.066 GeV−1^{-1}, while due to large cancellation the m.e. I(3S∣r∣1P1)=−0.020I(3S|r|1P_1)=-0.020 GeV−1^{-1} is small and negative; at the same time the magnitude of I(3S∣r∣1P0)=−0.063I(3S|r|1P_0)=-0.063 GeV−1^{-1} is relatively large. These m.e. give rise to the partial widths: Γ2(Υ(3S)→γχb2(1P))=212\Gamma_2(\Upsilon(3S)\rightarrow \gamma\chi_{b2}(1P))=212 eV, Γ0(Υ(3S)→γχb0(1P))=54\Gamma_0(\Upsilon(3S)\rightarrow \gamma\chi_{b0}(1P))=54 eV, which are in good agreement with the CLEO and BaBar data, and also to Γ1(Υ(3S)→γχb1(1P))=13\Gamma_1(\Upsilon(3S)\rightarrow \gamma\chi_{b1}(1P))=13 eV, which satisfies the BaBar limit, Γ1(exp.)<22\Gamma_1(exp.) < 22 eV.Comment: 8 page

    The charmed mesons in the region above 3.0 GeV

    Full text link
    The masses of excited charmed mesons are shown to decrease by ∼(50−150)\sim (50-150)~MeV due to a flattening of the confining potential at large distances, which effectively takes into account open decay channels. The scale of the mass shifts is similar to that in charmonium for ψ(4660)\psi(4660) and χc0(4700)\chi_{c0}(4700). The following masses of the first excitations: M(2 3P0)=2874M(2\,{}^3P_0)=2874~MeV, M(2 3P2)=2968M(2\,{}^3P_2)=2968~MeV, M(2 3D1)=3175M(2\,{}^3D_1)=3175~MeV, and M(2 3D3)=3187M(2\,{}^3D_3)=3187~MeV, and second excitations: M(3 1S0)=3008M(3\,{}^1S_0)=3008~MeV, M(3 3S1)=3062M(3\,{}^3S_1)=3062~MeV, M(3 3P0)=3229M(3\,{}^3P_0)=3229~MeV, and M(3 3P2)=3264M(3\,{}^3P_2) =3264~MeV, are predicted. The other states with L=0,1,2L=0,1,2 and nr≥3n_r \geq 3 have their masses in the region M(nL)≥3.3M(nL)\geq 3.3~GeV.Comment: 15 pages, 4 table

    Nambu monopoles in lattice Electroweak theory

    Full text link
    We considered the lattice electroweak theory at realistic values of α\alpha and θW\theta_W and for large values of the Higgs mass. We investigated numerically the properties of topological objects that are identified with quantum Nambu monopoles. We have found that the action density near the Nambu monopole worldlines exceeds the density averaged over the lattice in the physical region of the phase diagram. Moreover, their percolation probability is found to be an order parameter for the transition between the symmetric and the broken phases. Therefore, these monopoles indeed appear as real physical objects. However, we have found that their density on the lattice increases with increasing ultraviolet cutoff. Thus we conclude, that the conventional lattice electroweak theory is not able to predict the density of Nambu monopoles. This means that the description of Nambu monopole physics based on the lattice Weinberg - Salam model with finite ultraviolet cutoff is incomplete. We expect that the correct description may be obtained only within the lattice theory that involves the description of TeV - scale physics.Comment: LATE
    • …
    corecore