1,955 research outputs found

    A common genetic variant at 15q25 modifies the associations of maternal smoking during pregnancy with fetal growth: The generation r study

    Get PDF
    Objective: Maternal smoking during pregnancy is associated with fetal growth retardation. We examined whether a common genetic variant at chromosome 15q25 (rs1051730), which is known to be involved in nicotine metabolism, modifies the associations of maternal smoking with fetal growth characteristics. Methods: This study was performed in 3,563 European mothers participating in a population-based prospective cohort study from early pregnancy onwards. Smoking was assessed by postal questionnaires and fetal growth characteristics were measured by ultrasound examinations in each trimester of pregnancy. Results: Among mothers who did not smoke during pregnancy (82.9%), maternal rs1051730 was not consistently associated with any fetal growth characteristic. Among mothers who continued smoking during pregnancy (17.1%), maternal rs1051730 was not associated with head circumference. The T-allele of maternal rs1051730 was associated with a smaller second and third trimester fetal femur length [differences -0.23 mm (95%CI -0.45 to -0.00) and -0.41 mm (95%CI -0.69 to -0.13), respectively] and a smaller birth length [difference -2.61 mm (95%CI -5.32 to 0.11)]. The maternal T-allele of rs1051730 was associated with a lower third trimester estimated fetal weight [difference -33 grams (95%CI -55 to -10)], and tended to be associated with birth weight [difference -38 grams (95%CI -89 to 13)]. This association persisted after adjustment for smoking quantity. Conclusions: Our results suggest that maternal rs1051730 genotype modifies the associations of maternal smoking during pregnancy with impaired fetal growth in length and weight. These results should be considered as hypothesis generating and indicate the need for large-scale genome wide association studies focusing on gene - fetal smoke exposure interactions

    Associations of maternal and paternal blood pressure patterns and hypertensive disorders during pregnancy with childhood blood pressure

    Get PDF
    Background-Hypertensive disorders in pregnancy may affect the cardiovascular risk of offspring. We examined the associations of maternal blood pressure throughout pregnancy and hypertensive disorders in pregnancy with childhood blood pressure of offspring. Specific focus was on the comparison with paternal blood pressure effects, the identification of critical periods, and the role of birth outcomes and childhood body mass index in the observed associations. Methods and Results-This study was embedded in a population-based prospective cohort study among 5310 mothers and fathers and their children. We measured maternal blood pressure in each trimester of pregnancy and paternal blood pressure once. Information about hypertensive disorders in pregnancy was obtained from medical records. We measured childhood blood pressure at the median age of 6.0 years (95% range 5.7-8.0 years). Both maternal and paternal blood pressure were positively associated with childhood blood pressure (all P < 0.05), with similar effect estimates. Conditional regression analyses showed that early, mid-, and late-pregnancy maternal blood pressure levels were all independent and positively associated with childhood blood pressure, with the strongest effect estimates for early pregnancy. Compared with children of mothers without hypertensive disorders in pregnancy, children of mothers with hypertensive disorders in pregnancy had higher diastolic blood pressure by a standard deviation score of 0.13 (95% CI 0.05-0.21). The observed associations were not materially affected by birth outcomes and childhood body mass index. Conclusions-Both maternal and paternal blood pressure affects childhood blood pressure, independent of fetal and childhood growth measures, with the strongest effect of maternal blood pressure in early pregnancy

    Quantification of Dynamic 11C-Phenytoin PET Studies

    Get PDF
    The overexpression of P-glycoprotein (Pgp) is thought to be an important mechanism of pharmacoresistance in epilepsy. Recently, 11C-phenytoin has been evaluated preclinically as a tracer for Pgp. The aim of the present study was to assess the optimal plasma kinetic model for quantification of 11C-phenytoin studies in humans. Methods: Dynamic 11C-phenytoin PET scans of 6 healthy volunteers with arterial sampling were acquired twice on the same day and analyzed using single- and 2-tissue-compartment models with and without a blood volume parameter. Global and regional test– retest (TRT) variability was determined for both plasma to tissue rate constant (K1) and volume of distribution (VT). Results: According to the Akaike information criterion, the reversible single-tissue-compartment model with blood volume parameter was the preferred plasma input model. Mean TRT variability ranged from 1.5% to 16.9% for K1 and from 0.5% to 5.8% for VT. Larger volumes of interest showed better repeatabilities than smaller regions. A 45-min scan provided essentially the same K1 and VT values as a 60-min scan. Conclusion: A reversible single-tissue-compartment model with blood volume seems to be a good candidate model for quantification of dynamic 11C-phenytoin studies. Scan duration may be reduced to 45 min without notable loss of accuracy and precision of both K1 and VT, although this still needs to be confirmed under pathologic conditions

    In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy

    Full text link
    Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP-PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and β-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention

    Protein intake in infancy and kidney size and function at the age of 6 years: The Generation R Study

    Get PDF
    Background: High protein intake has been linked to kidney growth and function. Whether protein intake is related to kidney outcomes in healthy children is unclear. Methods: We examined the associations between protein intake in infancy and kidney outcomes at age 6 years in 2968 children participating in a population-based cohort study. Protein intake at 1 year was assessed using a food-frequency questionnaire and was adjusted for energy intake. At age 6 years we measured the kidney volume and urinary albumin/creatinine ratio (ACR) of all participating children, and we estimated glomerular filtration rate (eGFR) using serum creatinine and cystatin C levels. Results: In models adjusted for age, sex, body surface area, and sociodemographic factors, a higher protein intake was associated with a lower ACR and a higher eGFR but was not consistently associated with kidney volume. However, after further adjustment for additional dietary and lifestyle factors, such as sodium intake, diet quality, and television watching, higher protein intake was no longer associated with kidney function. No differences in associations were observed between animal and vegetable protein intake. Conclusions: Our findings show that protein intake in early childhood is not independently associated with kidney size or function at the age of 6 years. Further study is needed on other early life predictors of kidney size and function in later life

    Thermally driven spin injection from a ferromagnet into a non-magnetic metal

    Get PDF
    Creating, manipulating and detecting spin polarized carriers are the key elements of spin based electronics. Most practical devices use a perpendicular geometry in which the spin currents, describing the transport of spin angular momentum, are accompanied by charge currents. In recent years, new sources of pure spin currents, i.e., without charge currents, have been demonstrated and applied. In this paper, we demonstrate a conceptually new source of pure spin current driven by the flow of heat across a ferromagnetic/non-magnetic metal (FM/NM) interface. This spin current is generated because the Seebeck coefficient, which describes the generation of a voltage as a result of a temperature gradient, is spin dependent in a ferromagnet. For a detailed study of this new source of spins, it is measured in a non-local lateral geometry. We developed a 3D model that describes the heat, charge and spin transport in this geometry which allows us to quantify this process. We obtain a spin Seebeck coefficient for Permalloy of -3.8 microvolt/Kelvin demonstrating that thermally driven spin injection is a feasible alternative for electrical spin injection in, for example, spin transfer torque experiments

    Fetal growth influences lymphocyte subset counts at birth: The generation R study

    Get PDF
    Background: Preterm born and low-birth-weight infants are at risk for severe infections in infancy. It has been suggested that these infants have an immature immune system. Objective:To assess the associations of gestational age, birth weight and fetal growth with absolute lymphocyte subset counts at birth. Methods: This study was conducted in 571 infants participating in the Generation R Study, a population-based prospective cohort study from fetal life onwards. Gestational age and birth weight were obtained from midwives and hospital registries. Fetal growth was defined as increase in weight between late pregnancy and birth. Lymphocytes and T lymphocyte subset counts in cord blood were determined by 6-color flow cytometry. Multivariate linear regression models with adjustment for gender, maternal education, smoking, alcohol use, fever and mode of delivery were applied. Results: Per week increase of gestational age, T, B and NK lymphocyte counts increased with 3, 5 and 6%, respectively (p < 0.05). Helper, cytotoxic and naive T lymphocyte counts increased with 3, 4 and 5%, respectively (p < 0.05), but memory T lymphocyte counts did not. Increased birth weight and fetal growth were significantly associated with higher B lymphocyte counts, independent of gestational age, but not with the other lymphocyte subset counts. Conclusions: Lymphocyte subset counts increase with prolonged gestation, suggesting an ongoing development of the immune system. Birth weight and fetal growth seem to influence only B lymphocyte counts. Copyrigh

    Dynamic Modelling under Uncertainty: The Case of Trypanosoma brucei Energy Metabolism

    Get PDF
    Kinetic models of metabolism require detailed knowledge of kinetic parameters. However, due to measurement errors or lack of data this knowledge is often uncertain. The model of glycolysis in the parasitic protozoan Trypanosoma brucei is a particularly well analysed example of a quantitative metabolic model, but so far it has been studied with a fixed set of parameters only. Here we evaluate the effect of parameter uncertainty. In order to define probability distributions for each parameter, information about the experimental sources and confidence intervals for all parameters were collected. We created a wiki-based website dedicated to the detailed documentation of this information: the SilicoTryp wiki (http://silicotryp.ibls.gla.ac.uk/wiki/Glycolysis). Using information collected in the wiki, we then assigned probability distributions to all parameters of the model. This allowed us to sample sets of alternative models, accurately representing our degree of uncertainty. Some properties of the model, such as the repartition of the glycolytic flux between the glycerol and pyruvate producing branches, are robust to these uncertainties. However, our analysis also allowed us to identify fragilities of the model leading to the accumulation of 3-phosphoglycerate and/or pyruvate. The analysis of the control coefficients revealed the importance of taking into account the uncertainties about the parameters, as the ranking of the reactions can be greatly affected. This work will now form the basis for a comprehensive Bayesian analysis and extension of the model considering alternative topologies

    The Generation R Study Biobank: a resource for epidemiological studies in children and their parents

    Get PDF
    The Generation R Study is a population-based prospective cohort study from fetal life until young adulthood. The study is designed to identify early environmental and genetic causes of normal and abnormal growth, development and health from fetal life until young adulthood. In total, 9,778 mothers were enrolled in the study. Prenatal and postnatal data collection is conducted by physical examinations, questionnaires, interviews, ultrasound examinations and biological samples. Major efforts have been conducted for collecting biological specimens including DNA, blood for phenotypes and urine samples. In this paper, the collection, processing and storage of these biological specimens are described. Together with detailed phenotype measurements, these biological specimens form a unique resource for epidemiological studies focused on environmental exposures, genetic determinants and their interactions in relation to growth, health and development from fetal life onwards
    corecore