3 research outputs found

    A mitochondria-targeted fatty acid analogue influences hepatic glucose metabolism and reduces the plasma insulin/glucose ratio in male Wistar rats

    Get PDF
    A fatty acid analogue, 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), was previously shown to have hypolipidemic effects in rats by targeting mitochondrial activity predominantly in liver. This study aimed to determine if 1-triple TTA could influence carbohydrate metabolism. Male Wistar rats were treated for three weeks with oral supplementation of 100 mg/kg body weight 1-triple TTA. Blood glucose and insulin levels, and liver carbohydrate metabolism gene expression and enzyme activities were determined. In addition, human myotubes and Huh7 liver cells were treated with 1-triple TTA, and glucose and fatty acid oxidation were determined. The level of plasma insulin was significantly reduced in 1-triple TTA-treated rats, resulting in a 32% reduction in the insulin/glucose ratio. The hepatic glucose and glycogen levels were lowered by 22% and 49%, respectively, compared to control. This was accompanied by lower hepatic gene expression of phosphenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, and Hnf4A, a regulator of gluconeogenesis. Gene expression of pyruvate kinase, catalysing the final step of glycolysis, was also reduced by 1-triple TTA. In addition, pyruvate dehydrogenase activity was reduced, accompanied by 10-15-fold increased gene expression of its regulator pyruvate dehydrogenase kinase 4 compared to control, suggesting reduced entry of pyruvate into the TCA cycle. Indeed, the NADPH-generating enzyme malic enzyme 1 (ME1) catalysing production of pyruvate from malate, was increased 13-fold at the gene expression level. Despite the decreased glycogen level, genes involved in glycogen synthesis were not affected in livers of 1-triple TTA treated rats. In contrast, the pentose phosphate pathway seemed to be increased as the hepatic gene expression of glucose-6-phosphate dehydrogenase (G6PD) was higher in 1-triple TTA treated rats compared to controls. In human Huh7 liver cells, but not in myotubes, 1-triple-TTA reduced glucose oxidation and induced fatty acid oxidation, in line with previous observations of increased hepatic mitochondrial palmitoyl-CoA oxidation in rats. Importantly, this work recognizes the liver as an important organ in glucose homeostasis. The mitochondrially targeted fatty acid analogue 1-triple TTA seemed to lower hepatic glucose and glycogen levels by inhibition of gluconeogenesis. This was also linked to a reduction in glucose oxidation accompanied by reduced PHD activity and stimulation of ME1 and G6PD, favouring a shift from glucose- to fatty acid oxidation. The reduced plasma insulin/glucose ratio indicate that 1-triple TTA may improve glucose tolerance in rats

    A mitochondria-targeted fatty acid analogue influences hepatic glucose metabolism and reduces the plasma insulin/glucose ratio in male Wistar rats

    No full text
    A fatty acid analogue, 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), was previously shown to have hypolipidemic effects in rats by targeting mitochondrial activity predominantly in liver. This study aimed to determine if 1-triple TTA could influence carbohydrate metabolism. Male Wistar rats were treated for three weeks with oral supplementation of 100 mg/kg body weight 1-triple TTA. Blood glucose and insulin levels, and liver carbohydrate metabolism gene expression and enzyme activities were determined. In addition, human myotubes and Huh7 liver cells were treated with 1-triple TTA, and glucose and fatty acid oxidation were determined. The level of plasma insulin was significantly reduced in 1-triple TTA-treated rats, resulting in a 32% reduction in the insulin/glucose ratio. The hepatic glucose and glycogen levels were lowered by 22% and 49%, respectively, compared to control. This was accompanied by lower hepatic gene expression of phosphenolpyruvate carboxykinase, the rate-limiting enzyme in gluconeogenesis, and Hnf4A, a regulator of gluconeogenesis. Gene expression of pyruvate kinase, catalysing the final step of glycolysis, was also reduced by 1-triple TTA. In addition, pyruvate dehydrogenase activity was reduced, accompanied by 10-15-fold increased gene expression of its regulator pyruvate dehydrogenase kinase 4 compared to control, suggesting reduced entry of pyruvate into the TCA cycle. Indeed, the NADPH-generating enzyme malic enzyme 1 (ME1) catalysing production of pyruvate from malate, was increased 13-fold at the gene expression level. Despite the decreased glycogen level, genes involved in glycogen synthesis were not affected in livers of 1-triple TTA treated rats. In contrast, the pentose phosphate pathway seemed to be increased as the hepatic gene expression of glucose-6-phosphate dehydrogenase (G6PD) was higher in 1-triple TTA treated rats compared to controls. In human Huh7 liver cells, but not in myotubes, 1-triple-TTA reduced glucose oxidation and induced fatty acid oxidation, in line with previous observations of increased hepatic mitochondrial palmitoyl-CoA oxidation in rats. Importantly, this work recognizes the liver as an important organ in glucose homeostasis. The mitochondrially targeted fatty acid analogue 1-triple TTA seemed to lower hepatic glucose and glycogen levels by inhibition of gluconeogenesis. This was also linked to a reduction in glucose oxidation accompanied by reduced PHD activity and stimulation of ME1 and G6PD, favouring a shift from glucose- to fatty acid oxidation. The reduced plasma insulin/glucose ratio indicate that 1-triple TTA may improve glucose tolerance in rats

    High Throughput Screening of Additives Using Factorial Design to Promote Survival of Stored Cultured Epithelial Sheets

    No full text
    There is a need to optimize storage conditions to preserve cell characteristics during transport of cultured cell sheets from specialized culture units to distant hospitals. In this study, we aimed to explore a method to identify additives that diminish the decrease in the viability of stored undifferentiated epidermal cells using multifactorial design and an automated screening procedure. The cultured cells were stored for 7–11 days at 12°C in media supplemented with various additives. Effects were evaluated by calcein staining of live cells as well as morphology. Twenty-six additives were tested using (1) a two-level factorial design in which 10 additives were added or omitted in 64 different combinations and (2) a mixture design with 5 additives at 5 different concentrations in a total of 64 different mixtures. Automated microscopy and cell counting with Fiji enabled efficient processing of data. Significant regression models were identified by Design-Expert software. A calculated maximum increase of live cells to 37 ± 6% was achieved upon storage of cell sheets for 11 days in the presence of 6% glycerol. The beneficial effect of glycerol was shown for epidermal cell sheets from three different donors in two different storage media and with two different factorial designs. We have thus developed a high throughput screening system enabling robust assessment of live cells and identified glycerol as a beneficial additive that has a positive effect on epidermal cell sheet upon storage at 12°C. We believe this method could be of use in other cell culture optimization strategies where a large number of conditions are compared for their effect on cell viability or other quantifiable dependent variables
    corecore