57 research outputs found

    Absolute Dimensions and Apsidal Motion of the Young Detached System LT Canis Majoris

    Full text link
    New high resolution spectra of the short period (P~1.76 days) young detached binary LT CMa are reported for the first time. By combining the results from the analysis of new radial velocity curves and published light curves, we determine values for the masses, radii and temperatures as follows: M_1= 5.59 (0.20) M_o, R_1=3.56 (0.07) R_o and T_eff1= 17000 (500) K for the primary and M_2=3.36 (0.14) M_o, R_2= 2.04 (0.05) R_o and T_eff2= 13140 (800) K for the secondary. Static absorbtion features apart from those coming from the close binary components are detected in the several spectral regions. If these absorbtion features are from a third star, as the light curve solutions support, its radial velocity is measured to be RV_3=70(8) km s^-1. The orbit of the binary system is proved to be eccentric (e=0.059) and thus the apsidal motion exists. The estimated linear advance in longitude of periastron corresponds to an apsidal motion of U=694+/-5 yr for the system. The average internal structure constant log k_2,obs=-2.53 of LT CMa is found smaller than its theoretical value of log k_2,theo=-2.22 suggesting the stars would have more central concentration in mass. The photometric distance of LT CMa (d=535+/-45 pc) is found to be much smaller than the distance of CMa OB1 association (1150 pc) which rules out membership. A comparison with current stellar evolution models for solar metallicity indicates that LT CMa (35 Myr) is much older than the CMa OB1 association (3 Myr), confirming that LT CMa is not a member of CMa OB1. The kinematical and dynamical analysis indicate LT CMa is orbiting the Galaxy in a circular orbit and belongs to the young thin-disk population.Comment: 19 pages, 6 figures and 6 tables, accepted for publication in Publication of the Astronomical Society of Japa

    Study of Eclipsing Binary and Multiple Systems in OB Associations: I. Ori OB1a - IM Mon

    Full text link
    All available photometric and spectroscopic observations were collected and used as the basis of a detailed analysis of the close binary IM Mon. The orbital period of the binary was refined to 1.19024249(0.00000014) days. The Roche equipotentials, fractional luminosities (in (B, V) and H_p bands) and fractional radii for the component stars in addition to mass ratio q, inclination i of the orbit and the effective temperature T_eff of the secondary cooler less massive component were obtained by the analysis of light curves. IM Mon is classified to be a detached binary system in contrast to the contact configuration estimations in the literature. The absolute parameters of IM Mon were derived by the simultaneous solutions of light and radial velocity curves as M_1,2=5.50(0.24)M_o and 3.32(0.16)M_o, R1,2=3.15(0.04)R_o and 2.36(0.03)R_o, T_eff1,2=17500(350) K and 14500(550) K implying spectral types of B4 and B6.5 ZAMS stars for the primary and secondary components respectively. The modelling of the high resolution spectrum revealed the rotational velocities of the component stars as V_rot1=147(15) km/s and V_rot2=90(25) km/s. The photometric distance of 353(59) pc was found more precise and reliable than Hipparcos distance of 341(85) pc. An evolutionary age of 11.5(1.5) Myr was obtained for IM Mon. Kinematical and dynamical analysis support the membership of the young thin-disk population system IM Mon to the Ori OB1a association dynamically. Finally, we derived the distance, age and metallicity information of Ori OB1a sub-group using the information of IM Mon parameters.Comment: 26 pages, 5 figures and 6 tables, accepted for publication in Publication of the Astronomical Society of Japa

    On the Zero Point Constant of the Bolometric Correction Scale

    Full text link
    Arbitrariness attributed to the zero point constant of the VV band bolometric corrections (BCVBC_V) and its relation to "bolometric magnitude of a star ought to be brighter than its visual magnitude" and "bolometric corrections must always be negative" was investigated. The falsehood of the second assertion became noticeable to us after IAU 2015 General Assembly Resolution B2, where the zero point constant of bolometric magnitude scale was decided to have a definite value CBol(W)=71.197 425 ...C_{Bol}(W)= 71.197~425~...~. Since the zero point constant of the BCVBC_V scale could be written as C2=CBol−CVC_2=C_{Bol}-C_V, where CVC_V is the zero point constant of the visual magnitudes in the basic definition BCV=MBol−MV=mbol−mVBC_V=M_{Bol}-M_V=m_{bol}-m_V, and CBol>CVC_{Bol}>C_V, the zero point constant (C2C_2) of the BCVBC_V scale cannot be arbitrary anymore; rather, it must be a definite positive number obtained from the two definite positive numbers. The two conditions C2>0C_2>0 and 0<BCV<C20<BC_V<C_2 are also sufficient for LV<LL_V<L, a similar case to negative BCVBC_V numbers, which means that "bolometric corrections are not always negative". In sum it becomes apparent that the first assertion is misleading causing one to understand bolometric corrections must always be negative, which is not necessarily true.Comment: 12 pages, including 3 figures and 1 table, accepted for publication in Monthly Notices of the Royal Astronomical Societ

    Standard stellar luminosities: what are typical and limiting accuracies in the era after Gaia?

    No full text
    Methods of obtaining stellar luminosities (L) have been revised and a new concept, standard stellar luminosity, has been defined. In this paper, we study three methods: (i) a direct method from radii and effective temperatures; (ii) a method using a mass-luminosity relation (MLR); and (iii) a method requiring a bolometric correction. If the unique bolometric correction (BC) of a star extracted from a flux ratio (fv/f(Bol)) obtained from the observed spectrum with sufficient spectral coverage and resolution are used, the third method is estimated to provide an uncertainty (Delta L/L) typically at a low percentage, which could be as accurate as 1 per cent, perhaps more. The typical and limiting uncertainties of the predicted L of the three methods were compared. The secondary methods, which require either a pre-determined non-unique BC or MLR, were found to provide less accurate luminosities than the direct method, which could provide stellar luminosities with a typical accuracy of 8.2-12.2 per cent while its estimated limiting accuracy is 2.5 per cent
    • …
    corecore