163 research outputs found

    Functional Expression of the Heteromeric “Olfactory” Cyclic Nucleotide-Gated Channel in the Hippocampus: A Potential Effector of Synaptic Plasticity in Brain Neurons

    Get PDF
    Cyclic nucleotide-gated (cng) channels are important components of signaling systems mediating sensory transduction. In vertebrate photoreceptors, light activates a signaling cascade that causes a decrease in intracellular cGMP concentrations, closing retinal cng channels. Signal transduction in olfactory receptor neurons is believed to proceed via G-protein-mediated elevation of intracellular cAMP in response to odorant binding by 7-helix receptors. cAMP opens the olfactory cng channel, which is highly permeable to Ca^(2+). Here we demonstrate by in situ hybridization and immunohistochemistry with subunit-specific antibodies that both subunits of the heteromeric rat olfactory cng channel are also widely expressed in the brain. Expression of the retinal rod cng channel, however, can be detected only in the eye. In the adult hippocampus, the olfactory cng channel is expressed on cell bodies and processes of CA1 and CA3 neurons. In cultured embryonic hippocampal neurons, the channel is localized to a subset of growth cones and processes. We recorded conductances with the electrophysiological characteristics of the heteromeric olfactory cng channel in excised inside-out patches from these cultured neurons. We also show that Ca^(2+) influx into hippocampal neurons in response to cyclic nucleotide elevation can be detected using fura-2 imaging. Cyclic nucleotide elevation has been implicated in several mechanisms of synaptic plasticity in the hippocampus, and these mechanisms also require elevation of intracellular Ca^(2+). Our results suggest that the “olfactory” cng channel could regulate synaptic efficacy in brain neurons by modulating Ca^(2+) levels in response to changes in cyclic nucleotide concentrations

    Parameters of loading equilibration in a tube cold pilger mill drive

    Full text link
    On the basis of the variational approach and the Gauss-Seidel method there are proposed a technique and a mathematical model for determining the optimal parameters of dynamic load balancing systems on the crankshaft on the example of the cold rolling mill tube with reciprocating motion of an executive element in the form of a large mass working stand. The most compact scheme with the orthogonal motion of the executive element and the balancing load was chosen as the dynamic balance system. Variable parameters include dezaxial values, misalignment angle of cranks, weight of counterweight and balancing weight, lengths of connecting rods of executive and balancing mechanisms. For the existing series of sizes of cold rolling tube mill as the mass and speed of the rolling stand increase, the proportion of dynamic and technological components of the reduced load and respectively the kinematic scheme of the balancing mechanism changes. In this case, the structure of the loading and a set of variable parameters remain unchanged. Therefore, the proposed mathematical model of dynamic programming retains the universality of finding the minimum of maximum of the resulting load. © Published under licence by IOP Publishing Ltd

    Qualitative analysis of acid-base nutrition and its effect on the human body

    Get PDF
    The purpose of the study to identify the dependence of the psychoemotional state of a person on the acid load in the diet.Цель исследования – выявить зависимость психоэмоционального состояния человека от кислотной нагрузки рациона питания

    FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms

    Get PDF
    Tumour invasion and metastasis is the most common cause of death from cancer. For epithelial cells to invade surrounding tissues and metastasise, an epithelial-mesenchymal transition (EMT) is required. We have demonstrated that FGFR1 expression is increased in bladder cancer and that activation of FGFR1 induces an EMT in urothelial carcinoma (UC) cell lines. Here, we created an in vitro FGFR1-inducible model of EMT, and used this model to identify regulators of urothelial EMT. FGFR1 activation promoted EMT over a period of 72 hours. Initially a rapid increase in actin stress fibres occurred, followed by an increase in cell size, altered morphology and increased migration and invasion. By using site-directed mutagenesis and small molecule inhibitors we demonstrated that combined activation of the mitogen activated protein kinase (MAPK) and phospholipase C gamma (PLCγ) pathways regulated this EMT. Actin stress fibre formation was regulated by PLCγ activation, and was also important for the increase in cell size, migration and altered morphology. MAPK activation regulated migration and E-cadherin expression, indicating that combined activation of PLCγand MAPK is required for a full EMT. We used expression microarrays to assess changes in gene expression downstream of these signalling cascades. COX-2 was transcriptionally upregulated by FGFR1 and caused increased intracellular prostaglandin E2 levels, which promoted migration. In conclusion, we have demonstrated that FGFR1 activation in UC cells lines promotes EMT via coordinated activation of multiple signalling pathways and by promoting activation of prostaglandin synthesis

    The use of cystatin C to inhibit epithelial–mesenchymal transition and morphological transformation stimulated by transforming growth factor-β

    Get PDF
    INTRODUCTION: Transforming growth factor-β (TGF-β) is a potent suppressor of mammary epithelial cell (MEC) proliferation and is thus an inhibitor of mammary tumor formation. Malignant MECs typically evolve resistance to TGF-β-mediated growth arrest, enhancing their proliferation, invasion, and metastasis when stimulated by TGF-β. Recent findings suggest that therapeutics designed to antagonize TGF-β signaling may alleviate breast cancer progression, thereby improving the prognosis and treatment of breast cancer patients. We identified the cysteine protease inhibitor cystatin C (CystC) as a novel TGF-β type II receptor antagonist that inhibits TGF-β binding and signaling in normal and cancer cells. We hypothesized that the oncogenic activities of TGF-β, particularly its stimulation of mammary epithelial–mesenchymal transition (EMT), can be prevented by CystC. METHOD: Retroviral infection was used to constitutively express CystC or a CystC mutant impaired in its ability to inhibit cathepsin protease activity (namely Δ14CystC) in murine NMuMG MECs and in normal rat kidney (NRK) fibroblasts. The effect of recombinant CystC administration or CystC expression on TGF-β stimulation of NMuMG cell EMT in vitro was determined with immunofluorescence to monitor rearrangements of actin cytoskeletal architecture and E-cadherin expression. Soft-agar growth assays were performed to determine the effectiveness of CystC in preventing TGF-β stimulation of morphological transformation and anchorage-independent growth in NRK fibroblasts. Matrigel invasion assays were performed to determine the ability of CystC to inhibit NMuMG and NRK motility stimulated by TGF-β. RESULTS: CystC and Δ14CystC both inhibited NMuMG cell EMT and invasion stimulated by TGF-β by preventing actin cytoskeletal rearrangements and E-cadherin downregulation. Moreover, both CystC molecules completely antagonized TGF-β-mediated morphological transformation and anchorage-independent growth of NRK cells, and inhibited their invasion through synthetic basement membranes. Both CystC and Δ14CystC also inhibited TGF-β signaling in two tumorigenic human breast cancer cell lines. CONCLUSION: Our findings show that TGF-β stimulation of initiating metastatic events, including decreased cell polarization, reduced cell–cell contact, and elevated cell invasion and migration, are prevented by CystC treatment. Our findings also suggest that the future development of CystC or its peptide mimetics hold the potential to improve the therapeutic response of human breast cancers regulated by TGF-β

    Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro

    Get PDF
    INTRODUCTION: Transforming growth factor (TGF)-β1 is proposed to inhibit the growth of epithelial cells in early tumorigenesis, and to promote tumor cell motility and invasion in the later stages of carcinogenesis through the induction of an epithelial to mesenchymal transition (EMT). EMT is a multistep process that is characterized by changes in cell morphology and dissociation of cell–cell contacts. Although there is growing interest in TGF-β1-mediated EMT, the phenotype is limited to only a few murine cell lines and mouse models. METHODS: To identify alternative cell systems in which to study TGF-β1-induced EMT, 18 human and mouse established cell lines and cultures of two human primary epithelial cell types were screened for TGF-β1-induced EMT by analysis of cell morphology, and localization of zonula occludens-1, E-cadherin, and F-actin. Sensitivity to TGF-β1 was also determined by [(3)H]thymidine incorporation, flow cytometry, phosphorylation of Smad2, and total levels of Smad2 and Smad3 in these cell lines and in six additional cancer cell lines. RESULTS: TGF-β1 inhibited the growth of most nontransformed cells screened, but many of the cancer cell lines were insensitive to the growth inhibitory effects of TGF-β1. In contrast, TGF-β1 induced Smad2 phosphorylation in the majority of cell lines, including cell lines resistant to TGF-β1-mediated cell cycle arrest. Of the cell lines screened only two underwent TGF-β1-induced EMT. CONCLUSION: The results presented herein show that, although many cancer cell lines have lost sensitivity to the growth inhibitory effect of TGF-β1, most show evidence of TGF-β1 signal transduction, but only a few cell lines undergo TGF-β1-mediated EMT
    corecore