22 research outputs found

    Experimental investigation of PV/T and thermoelectric systems using CNT/ water nanofluids

    Get PDF
    This study investigated experimentally the thermal performance of a Photovoltaic-thermal (PV/T) and thermoelectric (TE) system using the application of two nanofluids. Single-walled Carbon nanotube/water (SWCNT/water) and multi-walled Carbon nanotube/water (MWCNT/water), with a mass fraction of 0.02% were assessed as the working fluid of the PV/T system. Examinations were done from 10:00 to 16:30 daily in November 2021 at Tarbiat Modares University, Tehran, Iran. Different parameters were measured during the experimental tests including fluid inlet and outlet temperatures, volume flow rate, solar irradiance, and ambient and cell surface temperatures. The results showed that the highest performance of the solar system was measured using the application of SWCNT/water nanofluid. The PV/T surface temperature decreased using nanofluids compared to pure water. It was found that the output generated power and efficiency improved using nanofluid application whereas application of SWCNT/water was more effective compared to MWCNT/water nanofluid. Also, the application of the two nanofluids improved the performance of the TE module compared to pure water. The highest values of TE electric current, voltage, generated power, and efficiency were obtained using the application of SWCNT/water nanofluid

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore