66,079 research outputs found
A universal solution
The phenomenon of an implicit function which solves a large set of second
order partial differential equations obtainable from a variational principle is
explicated by the introduction of a class of universal solutions to the
equations derivable from an arbitrary Lagrangian which is homogeneous of weight
one in the field derivatives. This result is extended to many fields. The
imposition of Lorentz invariance makes such Lagrangians unique, and equivalent
to the Companion Lagrangians introduced in [baker].Comment: arxiv version is already officia
Stationary device produces homogeneous mixture of fluids
Stationary device produces a homogeneous mixture of two or more one-phase or two-phase fluids. The device contains two concentric flow guides with helical passageways through which the fluids are forced into turbulent flow by the system pressure differential
OpenCL + OpenSHMEM Hybrid Programming Model for the Adapteva Epiphany Architecture
There is interest in exploring hybrid OpenSHMEM + X programming models to
extend the applicability of the OpenSHMEM interface to more hardware
architectures. We present a hybrid OpenCL + OpenSHMEM programming model for
device-level programming for architectures like the Adapteva Epiphany many-core
RISC array processor. The Epiphany architecture comprises a 2D array of
low-power RISC cores with minimal uncore functionality connected by a 2D mesh
Network-on-Chip (NoC). The Epiphany architecture offers high computational
energy efficiency for integer and floating point calculations as well as
parallel scalability. The Epiphany-III is available as a coprocessor in
platforms that also utilize an ARM CPU host. OpenCL provides good functionality
for supporting a co-design programming model in which the host CPU offloads
parallel work to a coprocessor. However, the OpenCL memory model is
inconsistent with the Epiphany memory architecture and lacks support for
inter-core communication. We propose a hybrid programming model in which
OpenSHMEM provides a better solution by replacing the non-standard OpenCL
extensions introduced to achieve high performance with the Epiphany
architecture. We demonstrate the proposed programming model for matrix-matrix
multiplication based on Cannon's algorithm showing that the hybrid model
addresses the deficiencies of using OpenCL alone to achieve good benchmark
performance.Comment: 12 pages, 5 figures, OpenSHMEM 2016: Third workshop on OpenSHMEM and
Related Technologie
Semiclassical Quantization of Effective String Theory and Regge Trajectories
We begin with an effective string theory for long distance QCD, and evaluate
the semiclassical expansion of this theory about a classical rotating string
solution, taking into account the the dynamics of the boundary of the string.
We show that, after renormalization, the zero point energy of the string
fluctuations remains finite when the masses of the quarks on the ends of the
string approach zero. The theory is then conformally invariant in any spacetime
dimension D. For D=26 the energy spectrum of the rotating string formally
coincides with that of the open string in classical Bosonic string theory.
However, its physical origin is different. It is a semiclassical spectrum of an
effective string theory valid only for large values of the angular momentum.
For D=4, the first semiclassical correction adds the constant 1/12 to the
classical Regge formula.Comment: 65 pages, revtex, 3 figures, added 2 reference
Observation of surface charge screening and Fermi level pinning on a synthetic, boron-doped diamond
Spectroscopic current-voltage (I-V) curves taken with a scanning tunneling microscope on a synthetic, boron-doped diamond single crystal indicate that the diamond, boiled in acid and baked to 500 °C in vacuum, does not exhibit ideal Schottky characteristics. These I-V curves taken in ultrahigh vacuum do not fit the traditional theory of thermionic emission; however, the deviation from ideal can be accounted for by charge screening at the diamond surface. At ambient pressure, the I-V curves have a sharp threshold voltage at 1.7 eV above the valence band edge indicating pinning of the Fermi energy. This measurement is in excellent agreement with the 1/3 band gap rule of Mead and Spitzer [Phys. Rev. 134, A713 (1964)]
Plasma Diagnostics by Antenna Impedance Measurements
The impedance of an electrically short antenna immersed in a plasma provides an excellent in situ diagnostic tool for electron density and other plasma parameters. By electrically short we mean that the wavelength of the free-space electromagnetic wave that would be excited at the driving frequency is much longer than the physical size of the antenna. Probes using this impedance technique have had a long history with sounding rockets and satellites, stretching back to the early 1960s. This active technique could provide information on composition and temperature of plasmas for comet or planetary missions. Advantages of the impedance probe technique are discussed and two classes of instruments built and flown by SDL-USU for determining electron density (the capacitance and plasma frequency probes) are described
Effective String Theory of Vortices and Regge Trajectories
Starting from a field theory containing classical vortex solutions, we obtain
an effective string theory of these vortices as a path integral over the two
transverse degrees of freedom of the string. We carry out a semiclassical
expansion of this effective theory, and use it to obtain corrections to Regge
trajectories due to string fluctuations.Comment: 27 pages, revtex, 3 figures, corrected an error with the cutoff in
appendix E (was previously D), added more discussion of Fig. 3, moved some
material in section 9 to a new appendi
The cluster environments of radio loud quasars
We have carried out multi-colour imaging of the fields of a statistically
complete sample of low-frequency selected radio loud quasars at 0.6<z<1.1, in
order to determine the characteristics of their environments. The largest radio
sources are located in the field, and smaller steep-spectrum sources are more
likely to be found in richer environments, from compact groups through to
clusters. This radio-based selection (including source size) of high redshift
groups and clusters is a highly efficient method of detecting rich environments
at these redshifts. Although our single filter clustering measures agree with
those of other workers, we show that these statistics cannot be used reliably
on fields individually, colour information is required for this.Comment: 5 pages, 3 figures, contribution to "Tracing Cosmic Evolution with
Galaxy Clusters" (Sesto 2001), ASP Conference Serie
- …