638 research outputs found
Chiral exponents in O(N) x O(m) spin models at O(1/N^2)
The critical exponents corresponding to chirality are computed at O(1/N^2) in
d-dimensions at the stable chiral fixed point of a scalar field theory with an
O(N) x O(m) symmetry. Pade-Borel estimates for the exponents are given in three
dimensions for the Landau-Ginzburg-Wilson model at m = 2.Comment: 8 latex page
Crossover exponent in O(N) phi^4 theory at O(1/N^2)
The critical exponent phi_c, derived from the anomalous dimension of the
bilinear operator responsible for crossover behaviour in O(N) phi^4 theory, is
calculated at O(1/N^2) in a large N expansion in arbitrary space-time dimension
d = 4 - 2 epsilon. Its epsilon expansion agrees with the known O(epsilon^4)
perturbative expansion and new information on the structure of the five loop
exponent is provided. Estimates of phi_c and the related crossover exponents
beta_c and gamma_c, using Pade-Borel resummation, are provided for a range of N
in three dimensions.Comment: 8 latex page
Data Analysis Challenges for the Einstein Telescope
The Einstein Telescope is a proposed third generation gravitational wave
detector that will operate in the region of 1 Hz to a few kHz. As well as the
inspiral of compact binaries composed of neutron stars or black holes, the
lower frequency cut-off of the detector will open the window to a number of new
sources. These will include the end stage of inspirals, plus merger and
ringdown of intermediate mass black holes, where the masses of the component
bodies are on the order of a few hundred solar masses. There is also the
possibility of observing intermediate mass ratio inspirals, where a stellar
mass compact object inspirals into a black hole which is a few hundred to a few
thousand times more massive. In this article, we investigate some of the data
analysis challenges for the Einstein Telescope such as the effects of increased
source number, the need for more accurate waveform models and the some of the
computational issues that a data analysis strategy might face.Comment: 18 pages, Invited review for Einstein Telescope special edition of
GR
Extension to order of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices
Using a renormalized linked-cluster-expansion method, we have extended to
order the high-temperature series for the susceptibility
and the second-moment correlation length of the spin-1/2 Ising models on
the sc and the bcc lattices. A study of these expansions yields updated direct
estimates of universal parameters, such as exponents and amplitude ratios,
which characterize the critical behavior of and . Our best
estimates for the inverse critical temperatures are
and . For the
susceptibility exponent we get and for the correlation
length exponent we get .
The ratio of the critical amplitudes of above and below the critical
temperature is estimated to be . The analogous ratio for
is estimated to be . For the correction-to-scaling
amplitude ratio we obtain .Comment: Misprints corrected, 8 pages, latex, no figure
The Non-Trivial Effective Potential of the `Trivial' lambda Phi^4 Theory: A Lattice Test
The strong evidence for the `triviality' of (lambda Phi^4)_4 theory is not
incompatible with spontaneous symmetry breaking. Indeed, for a `trivial' theory
the effective potential should be given exactly by the classical potential plus
the free-field zero-point energy of the shifted field; i.e., by the one-loop
effective potential. When this is renormalized in a simple, but nonperturbative
way, one finds, self-consistently, that the shifted field does become
non-interacting in the continuum limit. For a classically scale-invariant (CSI)
lambda Phi^4 theory one finds m_h^2 = 8 pi^2 v^2, predicting a 2.2 TeV Higgs
boson. Here we extend our earlier work in three ways: (i) we discuss the
analogy with the hard-sphere Bose gas; (ii) we extend the analysis from the CSI
case to the general case; and (iii) we propose a test of the predicted shape of
the effective potential that could be tested in a lattice simulation.Comment: 22 pages, LaTeX, DE-FG05-92ER40717-
Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis
Ligand-induced endocytosis and lysosomal degradation of cognate receptors regulate the extent of cell signaling. Along with linear endocytic motifs that recruit the adaptin protein complex 2 (AP2)–clathrin molecules, monoubiquitination of receptors has emerged as a major endocytic signal. By investigating ubiquitin-dependent lysosomal degradation of the interferon (IFN)-α/β receptor 1 (IFNAR1) subunit of the type I IFN receptor, we reveal that IFNAR1 is polyubiquitinated via both Lys48- and Lys63-linked chains. The SCFβTrcp (Skp1–Cullin1–F-box complex) E3 ubiquitin ligase that mediates IFNAR1 ubiquitination and degradation in cells can conjugate both types of chains in vitro. Although either polyubiquitin linkage suffices for postinternalization sorting, both types of chains are necessary but not sufficient for robust IFNAR1 turnover and internalization. These processes also depend on the proximity of ubiquitin-acceptor lysines to a linear endocytic motif and on its integrity. Furthermore, ubiquitination of IFNAR1 promotes its interaction with the AP2 adaptin complex that is required for the robust internalization of IFNAR1, implicating cooperation between site-specific ubiquitination and the linear endocytic motif in regulating this process
First Incursion of Salmonella enterica Serotype Typhimurium DT160 into New Zealand
An outbreak of human Salmonella enterica serotype Typhimurium DT160 infection in New Zealand was investigated from May to August 2001. Handling of dead wild birds, contact with persons with diarrheal illness, and consumption of fast food were associated with infection. Contaminated roof-collected rainwater was also detected
Abelian-Projected Effective Gauge Theory of QCD with Asymptotic Freedom and Quark Confinement
We give an outline of a recent proof that the low-energy effective gauge
theory exhibiting quark confinement due to magnetic monopole condensation can
be derived from QCD without any specific assumption. We emphasize that the
low-energy effective abelian gauge theories obtained here give the dual
description of the same physics in the low-energy region. They show that the
QCD vacuum is nothing but the dual (type II) superconductor.Comment: 15 pages, Latex, no figures, Talk given at YKIS'97, Non-perturbative
QCD, Kyot
Abelian-Projected Effective Gauge Theory of QCD with Asymptotic Freedom and Quark Confinement
Starting from SU(2) Yang-Mills theory in 3+1 dimensions, we prove that the
abelian-projected effective gauge theories are written in terms of the maximal
abelian gauge field and the dual abelian gauge field interacting with monopole
current. This is performed by integrating out all the remaining non-Abelian
gauge field belonging to SU(2)/U(1). We show that the resulting abelian gauge
theory recovers exactly the same one-loop beta function as the original
Yang-Mills theory. Moreover, the dual abelian gauge field becomes massive if
the monopole condensation occurs. This result supports the dual superconductor
scenario for quark confinement in QCD. We give a criterion of dual
superconductivity and point out that the monopole condensation can be estimated
from the classical instanton configuration. Therefore there can exist the
effective abelian gauge theory which shows both asymptotic freedom and quark
confinement based on the dual Meissner mechanism. Inclusion of arbitrary number
of fermion flavors is straightforward in this approach. Some implications to
lower dimensional case will also be discussed.Comment: 39 pages, Latex, no figures, (2.2, 4.1, 4.3 are modified; 4.4,
Appendices A,B,C and references are added. No change in conclusion
The Hamiltonian limit of (3+1)D SU(3) lattice gauge theory on anisotropic lattices
The extreme anisotropic limit of Euclidean SU(3) lattice gauge theory is
examined to extract the Hamiltonian limit, using standard path integral Monte
Carlo (PIMC) methods. We examine the mean plaquette and string tension and
compare them to results obtained within the Hamiltonian framework of Kogut and
Susskind. The results are a significant improvement upon previous Hamiltonian
estimates, despite the extrapolation procedure necessary to extract
observables. We conclude that the PIMC method is a reliable method of obtaining
results for the Hamiltonian version of the theory. Our results also clearly
demonstrate the universality between the Hamiltonian and Euclidean formulations
of lattice gauge theory. It is particularly important to take into account the
renormalization of both the anisotropy, and the Euclidean coupling ,
in obtaining these results.Comment: 10 pages, 11 figure
- …