51,983 research outputs found

    Thermal conductivities of ordinary and deuterated gaseous hydrogen fluoride and their equimolar mixture

    Get PDF
    Thermal conductivities of ordinary and deuterated gaseous hydrogen fluoride and their equimolar mixtur

    Status of the DOE (STOR)-sponsored national program on hydrogen production from water via thermochemical cycles

    Get PDF
    The program structure is presented. The activities of the thermochemical cycles program are grouped according to the following categories: (1) specific cycle development, (2) support research and technology, (3) cycle evaluation. Specific objectives and status of on-going activities are discussed. Chemical reaction series for the production of hydrogen are presented. Efficiency and economic evaluations are also discussed

    From microscopic to macroscopic descriptions of cell\ud migration on growing domains

    Get PDF
    Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is a ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last twenty years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs

    The life project

    Get PDF
    This conference paper is available to download from the publisher’s website at the link below.The Life Project explores issues of psychological projection into technology by diving into the convoluted relationship between practical purpose and emotional attachment, through both the creative act of designing and making robot entities with artificial emotions, and the social act of engaging with them. This process explores the concept of body representation through a multiidentity in virtual and physical blended space. In a lesser sense, it also suggests a future world of collaboration between physical and virtual forms, enabled by new forms of representation in blended worlds

    The turing model comes of molecular age

    Get PDF
    Molecular analysis of hair follicle formation provide evidence to support the most well-known mathematical model for biological pattern formation

    Some flight mechanics considerations for the Voyager mission

    Get PDF
    Voyager mission study considerations including launch opportunities, trajectory design, performance capability of Saturn V launch vehicle, and vehicle load relief contro

    Omnidirectional joint Patent

    Get PDF
    Cord restraint system for pressure suit joint

    Gravitational waves from black hole collisions via an eclectic approach

    Full text link
    We present the first results in a new program intended to make the best use of all available technologies to provide an effective understanding of waves from inspiralling black hole binaries in time for imminent observations. In particular, we address the problem of combining the close-limit approximation describing ringing black holes and full numerical relativity, required for essentially nonlinear interactions. We demonstrate the effectiveness of our approach using general methods for a model problem, the head-on collision of black holes. Our method allows a more direct physical understanding of these collisions indicating clearly when non-linear methods are important. The success of this method supports our expectation that this unified approach will be able to provide astrophysically relevant results for black hole binaries in time to assist gravitational wave observations.Comment: 4 pages, 3 eps figures, Revte
    • …
    corecore