79,844 research outputs found
Air speed and attitude probe
An air speed and attitude probe characterized by a pivot shaft normally projected from a data boom and supported thereby for rotation about an axis of rotation coincident with the longitudinal axis of the shaft is described. The probe is a tubular body supported for angular displacement about the axis of rotation and has a fin mounted on the body for maintaining one end of the body in facing relation with relative wind and has a pair of transducers mounted in the body for providing intelligence indicative of total pressure and static pressure for use in determining air speed. A stack of potentiometers coupled with the shaft to provide intelligence indicative of aircraft attitude, and circuitry connecting the transducers and potentiometers to suitable telemetry circuits are described
Confinement: Understanding the Relation Between the Wilson Loop and Dual Theories of Long Distance Yang Mills Theory
In this paper we express the velocity dependent, spin dependent heavy quark
potential in QCD in terms of a Wilson Loop determined
by pure Yang Mills theory. We use an effective dual theory of long-distance
Yang Mills theory to calculate for large loops; i.e. for loops of
size . ( is the flux tube radius, fixed by the value of the
Higgs (monopole) mass of the dual theory, which is a concrete realization of
the Mandelstam 't Hooft dual superconductor mechanism of confinement).
We replace by , given by a functional integral
over the dual variables, which for can be evaluated by a
semiclassical expansion, since the dual theory is weakly coupled at these
distances. The classical approximation gives the leading contribution to
and yields a velocity dependent heavy quark potential which
for large becomes linear in , and which for small approaches lowest
order perturbative QCD. This latter fact means that these results should remain
applicable down to distances where radiative corrections giving rise to a
running coupling constant become important. The spin dependence of the
potential reflects the vector coupling of the quarks at long range as well as
at short range. The methods developed here should be applicable to any
realization of the dual superconductor mechanism. They give an expression
determining independent of the classical approximation, but
semi classical corrections due to fluctuations of the flux tube are not worked
out in this paper. Taking these into account should lead to an effective string
theory free from the conformal anomaly.Comment: 39 pages, latex2e, 1 figure(fig.eps
Making use of geometrical invariants in black hole collisions
We consider curvature invariants in the context of black hole collision
simulations. In particular, we propose a simple and elegant combination of the
Weyl invariants I and J, the {\sl speciality index} . In the context
of black hole perturbations provides a measure of the size of the
distortions from an ideal Kerr black hole spacetime. Explicit calculations in
well-known examples of axisymmetric black hole collisions demonstrate that this
quantity may serve as a useful tool for predicting in which cases perturbative
dynamics provide an accurate estimate of the radiation waveform and energy.
This makes particularly suited to studying the transition from
nonlinear to linear dynamics and for invariant interpretation of numerical
results.Comment: 4 pages, 3 eps figures, Revte
Effective String Theory of Vortices and Regge Trajectories
Starting from a field theory containing classical vortex solutions, we obtain
an effective string theory of these vortices as a path integral over the two
transverse degrees of freedom of the string. We carry out a semiclassical
expansion of this effective theory, and use it to obtain corrections to Regge
trajectories due to string fluctuations.Comment: 27 pages, revtex, 3 figures, corrected an error with the cutoff in
appendix E (was previously D), added more discussion of Fig. 3, moved some
material in section 9 to a new appendi
Omnidirectional joint Patent
Cord restraint system for pressure suit joint
Excerpts from selected LANDSAT 1 final reports in geology
The standard formats for the summaries of selected LANDSAT geological data are presented as checklists. These include: (1) value of LANDSAT data to geology, (2) geologic benefits, (3) follow up studies, (4) cost benefits, (5) optimistic working scales, (6) statistical analysis, and (7) enhancement effects
Gravitational waves from black hole collisions via an eclectic approach
We present the first results in a new program intended to make the best use
of all available technologies to provide an effective understanding of waves
from inspiralling black hole binaries in time for imminent observations. In
particular, we address the problem of combining the close-limit approximation
describing ringing black holes and full numerical relativity, required for
essentially nonlinear interactions. We demonstrate the effectiveness of our
approach using general methods for a model problem, the head-on collision of
black holes. Our method allows a more direct physical understanding of these
collisions indicating clearly when non-linear methods are important. The
success of this method supports our expectation that this unified approach will
be able to provide astrophysically relevant results for black hole binaries in
time to assist gravitational wave observations.Comment: 4 pages, 3 eps figures, Revte
Improved Quantum Hard-Sphere Ground-State Equations of State
The London ground-state energy formula as a function of number density for a
system of identical boson hard spheres, corrected for the reduced mass of a
pair of particles in a sphere-of-influence picture, and generalized to fermion
hard-sphere systems with two and four intrinsic degrees of freedom, has a
double-pole at the ultimate \textit{regular} (or periodic, e.g.,
face-centered-cubic) close-packing density usually associated with a
crystalline branch. Improved fluid branches are contructed based upon exact,
field-theoretic perturbation-theory low-density expansions for many-boson and
many-fermion systems, appropriately extrapolated to intermediate densities, but
whose ultimate density is irregular or \textit{random} closest close-packing as
suggested in studies of a classical system of hard spheres. Results show
substantially improved agreement with the best available Green-function Monte
Carlo and diffusion Monte Carlo simulations for bosons, as well as with ladder,
variational Fermi hypernetted chain, and so-called L-expansion data for
two-component fermions.Comment: 15 pages and 7 figure
- …