235 research outputs found

    Biotin Deficiency in a Patient with Short Bowel Syndrome during Home Parenteral Nutrition

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141489/1/jpen0311.pd

    Non-invasive optical measurement of cerebral critical closing pressure in pediatric hydrocephalus

    Get PDF
    Hydrocephalus is a common disorder of cerebral spinal fluid (CSF) physiology that results in elevated intracranial pressure (ICP) and progressive expansion of cerebral ventricles.1 It affects 1-2 of every 1000 live births, making it the most common disease treated by pediatric neurosurgeons in the US.1 In roughly half of infants with hydrocephalus, ventricular expansion requires surgical intervention whereby a shunt is placed in the ventricles to divert CSF and relieve elevated ICP. Although timely treatment of elevated ICP is important for brain tissue viability, its implementation is hindered by the lack of tools for non-invasive ICP measurement. This study aims to validate non-invasive intracranial pressure (ICP) assessment with the near-infrared diffuse correlation spectroscopy (DCS) technique in infants with hydrocephalus. DCS employs near-infrared light to measure local, microvascular cerebral blood flow (CBF) continuously at the bedside. In addition to CBF, a novel approach for measurement of cerebral critical closing pressure (CrCP) based on DCS measurements of pulsatile CBF in arterioles was recently demonstrated.2-4 CrCP, which depends on ICP, defines the arterial blood pressure at which CBF approaches zero. Intraoperative non-invasive CrCP measurements with DCS on the prefrontal cortex were performed concurrently with invasive ICP measurements in 9 infants with hydrocephalus at the Children’s Hospital of Philadelphia. Invasive ICP was measured during surgical shunt placement. Please click Additional Files below to see the full abstract

    Training the workforce in evidence-based public health: An evaluation of impact among US and international practitioners

    Get PDF
    INTRODUCTION: The Prevention Research Center in St. Louis developed a course on evidence-based public health in 1997 to train the public health workforce in implementation of evidence-based public health. The objective of this study was to assess use and benefits of the course and identify barriers to using evidence-based public health skills as well as ways to improve the course. METHODS: We used a mixed-method design incorporating on-site pre- and post-evaluations among US and international course participants who attended from 2008 through 2011 and web-based follow-up surveys among course participants who attended from 2005 through 2011 (n = 626). Respondents included managers, specialists, and academics at state health departments, local health departments, universities, and national/regional health departments. RESULTS: We found significant improvement from pre- to post-evaluation for 11 measures of knowledge, skill, and ability. Follow-up survey results showed at least quarterly use of course skills in most categories, majority endorsement of most course benefits, and lack of funding and coworkers who do not have evidence-based public health training as the most significant barriers to implementation of evidence-based public health. Respondents suggested ways to increase evidence-based decision making at their organization, focusing on organizational support and continued access to training. CONCLUSION: Although the evidence-based public health course is effective in improving self-reported measures of knowledge, skill, and ability, barriers remain to the implementation of evidence-based decision making, demonstrating the importance of continuing to offer and expand training in evidence-based public health

    Quality Assurance in Highway Construction

    Get PDF
    From "Public Roads" Magazine, Volume 35, Numbers 6 - 11This report contains the reprint of six articles on the subject of quality assurance that have appeared in the past issues of "Public Roads" magazine.The articles are divided into the following:1. Introduction and Concepts2. Quality Assurance of Embankments and Base Courses3. Quality Assurance of Portland Cement Concrete4. Variations of Bituminous Construction5. Summary of Research for Quality Assurance of Aggregate6. Control Chart

    Loss of PTB or Negative Regulation of Notch mRNA Reveals Distinct Zones of Notch and Actin Protein Accumulation in Drosophila Embryo

    Get PDF
    Polypyrimidine Tract Binding (PTB) protein is a regulator of mRNA processing and translation. Genetic screens and studies of wing and bristle development during the post-embryonic stages of Drosophila suggest that it is a negative regulator of the Notch pathway. How PTB regulates the Notch pathway is unknown. Our studies of Drosophila embryogenesis indicate that (1) the Notch mRNA is a potential target of PTB, (2) PTB and Notch functions in the dorso-lateral regions of the Drosophila embryo are linked to actin regulation but not their functions in the ventral region, and (3) the actin-related Notch activity in the dorso-lateral regions might require a Notch activity at or near the cell surface that is different from the nuclear Notch activity involved in cell fate specification in the ventral region. These data raise the possibility that the Drosophila embryo is divided into zones of different PTB and Notch activities based on whether or not they are linked to actin regulation. They also provide clues to the almost forgotten role of Notch in cell adhesion and reveal a role for the Notch pathway in cell fusions

    Identifying invasive species threats, pathways, and impacts to improve biosecurity

    Get PDF
    Managing invasive species with prevention and early-detection strategies can avert severe ecological and economic impacts. Horizon scanning, an evidence-based process combining risk screening and consensus building to identify threats, has become a valuable tool for prioritizing invasive species management and prevention. We assembled a working group of experts from academic, government, and nonprofit agencies and organizations, and conducted a multi-taxa horizon scan for Florida, USA, the first of its kind in North America. Our primary objectives were to identify high-risk species and their introduction pathways, to detail the magnitude and mechanism of potential impacts, and, more broadly, to demonstrate the utility of horizon scanning. As a means to facilitate future horizon scans, we document the process used to generate the list of taxa for screening. We evaluated 460 taxa for their potential to arrive, establish, and cause negative ecological and socioeconomic impacts, and identified 40 potential invaders, including alewife, zebra mussel, crab-eating macaque, and red swamp crayfish. Vertebrates and aquatic invertebrates posed the greatest invasion threat, over half of the high-risk taxa were omnivores, and there was high confidence in the scoring of high-risk taxa. Common arrival pathways were ballast water, biofouling of vessels, and escape from the pet/aquarium/horticulture trade. Competition, predation, and damage to agriculture/forestry/aquaculture were common impact mechanisms. We recommend full risk analysis for the high-risk taxa; increased surveillance at Florida's ports, state borders, and high-risk pathways; and periodic review and revision of the list. Few horizon scans detail the comprehensive methodology (including list-building), certainty estimates for all scoring categories and the final score, detailed pathways, and the magnitude and mechanism of impact. Providing this information can further inform prevention efforts and can be efficiently replicated in other regions. Moreover, harmonizing methodology can facilitate data sharing and enhance interpretation of results for stakeholders and the general public.</p

    The use of novel diffuse optical spectroscopies for improved neuromonitoring during neonatal cardiac surgery requiring antegrade cerebral perfusion

    Get PDF
    BackgroundSurgical procedures involving the aortic arch present unique challenges to maintaining cerebral perfusion, and optimal neuroprotective strategies to prevent neurological injury during such high-risk procedures are not completely understood. The use of antegrade cerebral perfusion (ACP) has gained favor as a neuroprotective strategy over deep hypothermic circulatory arrest (DHCA) due to the ability to selectively perfuse the brain. Despite this theoretical advantage over DHCA, there has not been conclusive evidence that ACP is superior to DHCA. One potential reason for this is the incomplete understanding of ideal ACP flow rates to prevent both ischemia from underflowing and hyperemia and cerebral edema from overflowing. Critically, there are no continuous, noninvasive measurements of cerebral blood flow (CBF) and cerebral oxygenation (StO2) to guide ACP flow rates and help develop standard clinical practices. The purpose of this study is to demonstrate the feasibility of using noninvasive, diffuse optical spectroscopy measurements of CBF and cerebral oxygenation during the conduct of ACP in human neonates undergoing the Norwood procedure.MethodsFour neonates prenatally diagnosed with hypoplastic left heart syndrome (HLHS) or a similar variant underwent the Norwood procedure with continuous intraoperative monitoring of CBF and cerebral oxygen saturation (StO2) using two non-invasive optical techniques, namely diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS). Changes in CBF and StO2 due to ACP were calculated by comparing these parameters during a stable 5 min period of ACP to the last 5 min of full-body CPB immediately prior to ACP initiation. Flow rates for ACP were left to the discretion of the surgeon and ranged from 30 to 50 ml/kg/min, and all subjects were cooled to 18°C prior to initiation of ACP.ResultsDuring ACP, the continuous optical monitoring demonstrated a median (IQR) percent change in CBF of −43.4% (38.6) and a median (IQR) absolute change in StO2 of −3.6% (12.3) compared to a baseline period during full-body cardiopulmonary bypass (CPB). The four subjects demonstrated varying responses in StO2 due to ACP. ACP flow rates of 30 and 40 ml/kg/min (n = 3) were associated with decreased CBF during ACP compared to full-body CPB. Conversely, one subject with a higher flow6Di rate of 50 ml/kg/min demonstrated increased CBF and StO2 during ACP.ConclusionsThis feasibility study demonstrates that novel diffuse optical technologies can be utilized for improved neuromonitoring in neonates undergoing cardiac surgery where ACP is utilized. Future studies are needed to correlate these findings with neurological outcomes to inform best practices during ACP in these high-risk neonates

    Optical imaging and spectroscopy for the study of the human brain: status report.

    Get PDF
    This report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions

    Focusing on fast food restaurants alone underestimates the relationship between neighborhood deprivation and exposure to fast food in a large rural area

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals and families are relying more on food prepared outside the home as a source for at-home and away-from-home consumption. Restricting the estimation of fast-food access to fast-food restaurants alone may underestimate potential spatial access to fast food.</p> <p>Methods</p> <p>The study used data from the 2006 Brazos Valley Food Environment Project (BVFEP) and the 2000 U.S. Census Summary File 3 for six rural counties in the Texas Brazos Valley region. BVFEP ground-truthed data included identification and geocoding of all fast-food restaurants, convenience stores, supermarkets, and grocery stores in study area and on-site assessment of the availability and variety of fast-food lunch/dinner entrées and side dishes. Network distance was calculated from the population-weighted centroid of each census block group to all retail locations that marketed fast food (<it>n </it>= 205 fast-food opportunities).</p> <p>Results</p> <p>Spatial access to fast-food opportunities (FFO) was significantly better than to traditional fast-food restaurants (FFR). The median distance to the nearest FFO was 2.7 miles, compared with 4.5 miles to the nearest FFR. Residents of high deprivation neighborhoods had better spatial access to a variety of healthier fast-food entrée and side dish options than residents of low deprivation neighborhoods.</p> <p>Conclusions</p> <p>Our analyses revealed that identifying fast-food restaurants as the sole source of fast-food entrées and side dishes underestimated neighborhood exposure to fast food, in terms of both neighborhood proximity and coverage. Potential interventions must consider all retail opportunities for fast food, and not just traditional FFR.</p
    corecore