1,957 research outputs found

    Comparison of Post-injection Site Pain Between Technetium Sulfur Colloid and Technetium Tilmanocept in Breast Cancer Patients Undergoing Sentinel Lymph Node Biopsy.

    Get PDF
    BackgroundNo prior studies have examined injection pain associated with Technetium-99m Tilmanocept (TcTM).MethodsThis was a randomized, double-blinded study comparing postinjection site pain between filtered Technetium Sulfur Colloid (fTcSC) and TcTM in breast cancer lymphoscintigraphy. Pain was evaluated with a visual analogue scale (VAS) (0-100 mm) and the short-form McGill Pain Questionnaire (SF-MPQ). The primary endpoint was mean difference in VAS scores at 1-min postinjection between fTcSC and TcTM. Secondary endpoints included a comparison of SF-MPQ scores between the groups at 5 min postinjection and construction of a linear mixed effects model to evaluate the changes in pain during the 5-min postinjection period.ResultsFifty-two patients underwent injection (27-fTcSC, 25-TcTM). At 1-min postinjection, patients who received fTcSC experienced a mean change in pain of 16.8 mm (standard deviation (SD) 19.5) compared with 0.2 mm (SD 7.3) in TcTM (p = 0.0002). At 5 min postinjection, the mean total score on the SF-MPQ was 2.8 (SD 3.0) for fTcSC versus 2.1 (SD 2.5) for TcTM (p = 0.36). In the mixed effects model, injection agent (p < 0.001), time (p < 0.001) and their interaction (p < 0.001) were associated with change in pain during the 5-min postinjection period. The model found fTcSC resulted in significantly more pain of 15.2 mm (p < 0.001), 11.3 mm (p = 0.001), and 7.5 mm (p = 0.013) at 1, 2, and 3 min postinjection, respectively.ConclusionsInjection with fTcSC causes significantly more pain during the first 3 min postinjection compared with TcTM in women undergoing lymphoscintigraphy for breast cancer

    Quantitative acoustic models for superfluid circuits

    Full text link
    We experimentally realize a highly tunable superfluid oscillator circuit in a quantum gas of ultracold atoms and develop and verify a simple lumped-element description of this circuit. At low oscillator currents, we demonstrate that the circuit is accurately described as a Helmholtz resonator, a fundamental element of acoustic circuits. At larger currents, the breakdown of the Helmholtz regime is heralded by a turbulent shedding of vortices and density waves. Although a simple phase-slip model offers qualitative insights into the circuit's resistive behavior, our results indicate deviations from the phase-slip model. A full understanding of the dissipation in superfluid circuits will thus require the development of empirical models of the turbulent dynamics in this system, as have been developed for classical acoustic systems.Comment: 12 pages, 9 figure

    Medium-Energy Gamma-Ray Astrophysics with the 3-DTI Gamma-Ray Telescope

    Get PDF
    Gamma-ray observations in the medium energy range (0.50-50.0 MeV) are central to unfolding many outstanding questions in astrophysics. The challenges of medium-energy gamma-ray observations, however, are the low photon statistics and large backgrounds. We review these questions, address the telescope technology requirements, and describe our development of the 3-Dimensional Track Imaging (3-DTI) Compton telescope and its performance for a new mediumenergy gamma-ray mission. The 3-DTI is a large-volume time projection chamber (TPC) with a 2-dimensional gas micro-well detector (MWD) readout

    Testing outer boundary treatments for the Einstein equations

    Get PDF
    Various methods of treating outer boundaries in numerical relativity are compared using a simple test problem: a Schwarzschild black hole with an outgoing gravitational wave perturbation. Numerical solutions computed using different boundary treatments are compared to a `reference' numerical solution obtained by placing the outer boundary at a very large radius. For each boundary treatment, the full solutions including constraint violations and extracted gravitational waves are compared to those of the reference solution, thereby assessing the reflections caused by the artificial boundary. These tests use a first-order generalized harmonic formulation of the Einstein equations. Constraint-preserving boundary conditions for this system are reviewed, and an improved boundary condition on the gauge degrees of freedom is presented. Alternate boundary conditions evaluated here include freezing the incoming characteristic fields, Sommerfeld boundary conditions, and the constraint-preserving boundary conditions of Kreiss and Winicour. Rather different approaches to boundary treatments, such as sponge layers and spatial compactification, are also tested. Overall the best treatment found here combines boundary conditions that preserve the constraints, freeze the Newman-Penrose scalar Psi_0, and control gauge reflections.Comment: Modified to agree with version accepted for publication in Class. Quantum Gra

    Neuroprotection in a Novel Mouse Model of Multiple Sclerosis

    Get PDF
    The authors acknowledge the support of the Barts and the London Charity, the Multiple Sclerosis Society of Great Britain and Northern Ireland, the National Multiple Sclerosis Society, USA, notably the National Centre for the Replacement, Refinement & Reduction of Animals in Research, and the Wellcome Trust (grant no. 092539 to ZA). The siRNA was provided by Quark Pharmaceuticals. The funders and Quark Pharmaceuticals had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Pediatric high-grade glioma: biologically and clinically in need of new thinking.

    Get PDF
    High-grade gliomas in children are different from those that arise in adults. Recent collaborative molecular analyses of these rare cancers have revealed previously unappreciated connections among chromatin regulation, developmental signaling, and tumorigenesis. As we begin to unravel the unique developmental origins and distinct biological drivers of this heterogeneous group of tumors, clinical trials need to keep pace. It is important to avoid therapeutic strategies developed purely using data obtained from studies on adult glioblastoma. This approach has resulted in repetitive trials and ineffective treatments being applied to these children, with limited improvement in clinical outcome. The authors of this perspective, comprising biology and clinical expertise in the disease, recently convened to discuss the most effective ways to translate the emerging molecular insights into patient benefit. This article reviews our current understanding of pediatric high-grade glioma and suggests approaches for innovative clinical management

    Dextran Sodium Sulfate (DSS) Induces Colitis in Mice by Forming Nano-Lipocomplexes with Medium-Chain-Length Fatty Acids in the Colon

    Get PDF
    Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn's disease, are inflammatory disorders caused by multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate solution, free dextran) induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated molecules established linkages with medium-chain-length fatty acids (MCFAs), such as dodecanoate, that are present in the colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ∼200 nm in diameter that can fuse with colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties. The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify DSS to develop materials beneficial to the colon without affecting colon-targeting specificity

    Feedback control architecture and the bacterial chemotaxis network.

    Get PDF
    PMCID: PMC3088647This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Bacteria move towards favourable and away from toxic environments by changing their swimming pattern. This response is regulated by the chemotaxis signalling pathway, which has an important feature: it uses feedback to 'reset' (adapt) the bacterial sensing ability, which allows the bacteria to sense a range of background environmental changes. The role of this feedback has been studied extensively in the simple chemotaxis pathway of Escherichia coli. However it has been recently found that the majority of bacteria have multiple chemotaxis homologues of the E. coli proteins, resulting in more complex pathways. In this paper we investigate the configuration and role of feedback in Rhodobacter sphaeroides, a bacterium containing multiple homologues of the chemotaxis proteins found in E. coli. Multiple proteins could produce different possible feedback configurations, each having different chemotactic performance qualities and levels of robustness to variations and uncertainties in biological parameters and to intracellular noise. We develop four models corresponding to different feedback configurations. Using a series of carefully designed experiments we discriminate between these models and invalidate three of them. When these models are examined in terms of robustness to noise and parametric uncertainties, we find that the non-invalidated model is superior to the others. Moreover, it has a 'cascade control' feedback architecture which is used extensively in engineering to improve system performance, including robustness. Given that the majority of bacteria are known to have multiple chemotaxis pathways, in this paper we show that some feedback architectures allow them to have better performance than others. In particular, cascade control may be an important feature in achieving robust functionality in more complex signalling pathways and in improving their performance
    • …
    corecore