1,378 research outputs found

    Hard Instances of the Constrained Discrete Logarithm Problem

    Get PDF
    The discrete logarithm problem (DLP) generalizes to the constrained DLP, where the secret exponent xx belongs to a set known to the attacker. The complexity of generic algorithms for solving the constrained DLP depends on the choice of the set. Motivated by cryptographic applications, we study sets with succinct representation for which the constrained DLP is hard. We draw on earlier results due to Erd\"os et al. and Schnorr, develop geometric tools such as generalized Menelaus' theorem for proving lower bounds on the complexity of the constrained DLP, and construct sets with succinct representation with provable non-trivial lower bounds

    Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behaviour of the weakly disordered systems is given. Directly, for three- and two-dimensional systems a renormalization analysis of the effective Hamiltonian of model with replica symmetry breaking (RSB) potentials is carried out in the two-loop approximation. For case with 1-step RSB the fixed points (FP's) corresponding to stability of the various types of critical behaviour are identified with the use of the Pade-Borel summation technique. Analysis of FP's has shown a stability of the critical behaviour of the weakly disordered systems with respect to RSB effects and realization of former scenario of disorder influence on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the β\beta functions for arbitrary dimension of syste

    Virus shapes and buckling transitions in spherical shells

    Full text link
    We show that the icosahedral packings of protein capsomeres proposed by Caspar and Klug for spherical viruses become unstable to faceting for sufficiently large virus size, in analogy with the buckling instability of disclinations in two-dimensional crystals. Our model, based on the nonlinear physics of thin elastic shells, produces excellent one parameter fits in real space to the full three-dimensional shape of large spherical viruses. The faceted shape depends only on the dimensionless Foppl-von Karman number \gamma=YR^2/\kappa, where Y is the two-dimensional Young's modulus of the protein shell, \kappa is its bending rigidity and R is the mean virus radius. The shape can be parameterized more quantitatively in terms of a spherical harmonic expansion. We also investigate elastic shell theory for extremely large \gamma, 10^3 < \gamma < 10^8, and find results applicable to icosahedral shapes of large vesicles studied with freeze fracture and electron microscopy.Comment: 11 pages, 12 figure

    A service oriented architecture for decision making in engineering design

    Get PDF
    Decision making in engineering design can be effectively addressed by using genetic algorithms to solve multi-objective problems. These multi-objective genetic algorithms (MOGAs) are well suited to implementation in a Service Oriented Architecture. Often the evaluation process of the MOGA is compute-intensive due to the use of a complex computer model to represent the real-world system. The emerging paradigm of Grid Computing offers a potential solution to the compute-intensive nature of this objective function evaluation, by allowing access to large amounts of compute resources in a distributed manner. This paper presents a grid-enabled framework for multi-objective optimisation using genetic algorithms (MOGA-G) to aid decision making in engineering design

    Soils of Rosebank Research Station, Longreach, Queensland

    Get PDF
    The soils of Rosebank Research Station, Longreach are described and mapped at 1:25 000 scale. The report draws together information on the climate, landform, geology and vegetation of the region. The morphology and distribution of the soils are discussed with reference to usage and management considerations. The survey shows the property comprises 70% rolling downs with minor gidgee and boree communities. The remaining portions are associated with the drainage lines of Elibank and Wellshot creeks. Soils of the rolling downs are moderately deep cracking clays with strongly self-mulching surfaces. Colluvial soils adjoin the streamchannels. The channel benches, backplains and braided drainage depressions are a complex of cracking and non cracking clays and duplex soils. The soils generally are alkaline and calcareous

    Finite one dimensional impenetrable Bose systems: Occupation numbers

    Full text link
    Bosons in the form of ultra cold alkali atoms can be confined to a one dimensional (1d) domain by the use of harmonic traps. This motivates the study of the ground state occupations λi\lambda_i of effective single particle states ϕi\phi_i, in the theoretical 1d impenetrable Bose gas. Both the system on a circle and the harmonically trapped system are considered. The λi\lambda_i and ϕi\phi_i are the eigenvalues and eigenfunctions respectively of the one body density matrix. We present a detailed numerical and analytic study of this problem. Our main results are the explicit scaled forms of the density matrices, from which it is deduced that for fixed ii the occupations λi\lambda_i are asymptotically proportional to N\sqrt{N} in both the circular and harmonically trapped cases.Comment: 22 pages, 8 figures (.eps), uses REVTeX

    Five-loop renormalization-group expansions for the three-dimensional n-vector cubic model and critical exponents for impure Ising systems

    Full text link
    The renormalization-group (RG) functions for the three-dimensional n-vector cubic model are calculated in the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the three-dimensional impure Ising systems are extracted from the five-loop RG series by means of the Pade-Borel-Leroy resummation under n = 0. These exponents are found to be: \gamma = 1.325 +/- 0.003, \eta = 0.025 +/- 0.01, \nu = 0.671 +/- 0.005, \alpha = - 0.0125 +/- 0.008, \beta = 0.344 +/- 0.006. For the correction-to-scaling exponent, the less accurate estimate \omega = 0.32 +/- 0.06 is obtained.Comment: 11 pages, LaTeX, no figures, published versio

    Svestka's Research: Then and Now

    Full text link
    Zdenek Svestka's research work influenced many fields of solar physics, especially in the area of flare research. In this article I take five of the areas that particularly interested him and assess them in a "then and now" style. His insights in each case were quite sound, although of course in the modern era we have learned things that he could not readily have envisioned. His own views about his research life have been published recently in this journal, to which he contributed so much, and his memoir contains much additional scientific and personal information (Svestka, 2010).Comment: Invited review for "Solar and Stellar Flares," a conference in honour of Prof. Zden\v{e}k \v{S}vestka, Prague, June 23-27, 2014. This is a contribution to a Topical Issue in Solar Physics, based on the presentations at this meeting (Editors Lyndsay Fletcher and Petr Heinzel

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
    corecore