22 research outputs found

    Neural crest Notch/Rbpj signaling regulates olfactory gliogenesis and neuronal migration

    Get PDF
    The neural crest‐derived ensheathing glial cells of the olfactory nerve (OECs) are unique in spanning both the peripheral and central nervous systems: they ensheathe bundles of axons projecting from olfactory receptor neurons in the nasal epithelium to their targets in the olfactory bulb. OECs are clinically relevant as a promising autologous cell transplantation therapy for promoting central nervous system repair. They are also important for fertility, being required for the migration of embryonic gonadotropin‐releasing hormone (GnRH) neurons from the olfactory placode along terminal nerve axons to the medial forebrain, which they enter caudal to the olfactory bulbs. Like Schwann cell precursors, OEC precursors associated with the developing olfactory nerve express the glial marker myelin protein zero and the key peripheral glial transcription factor Sox10. The transition from Schwann cell precursors to immature Schwann cells is accelerated by canonical Notch signaling via the Rbpj transcription factor. Here, we aimed to test the role of Notch/Rbpj signaling in developing OECs by blocking the pathway in both chicken and mouse. Our results suggest that Notch/Rbpj signaling prevents the cranial neural crest cells that colonize the olfactory nerve from differentiating as neurons, and at later stages contributes to the guidance of GnRH neurons

    Striking parallels between carotid body glomus cell and adrenal chromaffin cell development

    Get PDF
    Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson’s disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are ‘émigrés’ from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the ‘émigré’ hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes – carotid body glomus cells, and ‘pulmonary neuroendocrine cells’ (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive ‘neuroepithelial cells’ (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches

    Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes

    Get PDF
    The evolutionary origins of the hypoxia-sensitive cells that trigger amniote respiratory reflexes - carotid body glomus cells, and 'pulmonary neuroendocrine cells' (PNECs) - are obscure. Homology has been proposed between glomus cells, which are neural crest-derived, and the hypoxia-sensitive 'neuroepithelial cells' (NECs) of fish gills, whose embryonic origin is unknown. NECs have also been likened to PNECs, which differentiate in situ within lung airway epithelia. Using genetic lineage-tracing and neural crest-deficient mutants in zebrafish, and physical fate-mapping in frog and lamprey, we find that NECs are not neural crest-derived, but endoderm-derived, like PNECs, whose endodermal origin we confirm. We discover neural crest-derived catecholaminergic cells associated with zebrafish pharyngeal arch blood vessels, and propose a new model for amniote hypoxia-sensitive cell evolution: endoderm-derived NECs were retained as PNECs, while the carotid body evolved via the aggregation of neural crest-derived catecholaminergic (chromaffin) cells already associated with blood vessels in anamniote pharyngeal arches.This work was funded by the Wellcome Trust (Ph.D. Studentship 086804/Z/08/Z to DH; Senior Investigator Award 102889/Z/13/Z to AST), the NIDCR/NIH (R21-DE021509 to SF; R01-DE018477 to EWK), the NIDDK/NIH (1DP2DK098092 to PDSD), the NIH (R01-HL092217 to EWK), the Zebrafish Initiative of the Vanderbilt University Academic Venture Capital Fund (to EWK), the Vanderbilt International Scholar Program (to GU), the HFSP (Long-Term Fellowship to CM) and the Swiss National Science Foundation (Advanced Postdoctoral Fellowship and Professorship to CM). For further information, please visit the publisher's website

    Apoptosis and proliferation in the trigeminal placode

    Get PDF
    The neurogenic trigeminal placode develops from the crescent-shaped panplacodal primordium which delineates the neural plate anteriorly. We show that, in Tupaia belangeri, the trigeminal placode is represented by a field of focal ectodermal thickenings which over time changes positions from as far rostral as the level of the forebrain to as far caudal as opposite rhombomere 3. Delamination proceeds rostrocaudally from the ectoderm adjacent to the rostral midbrain, and contributes neurons to the trigeminal ganglion as well as to the ciliary ganglion/oculomotor complex. Proliferative events are centered on the field prior to the peak of delamination. They are preceded, paralleled and, finally, outnumbered by apoptotic events which proceed rostrocaudally from non-delaminating to delaminating parts of the field. Apoptosis persists upon regression of the placode, thereby exhibiting a massive “wedge” of apoptotic cells which includes the postulated position of the “ventrolateral postoptic placode” (Lee et al. in Dev Biol 263:176–190, 2003), merges with groups of lens-associated apoptotic cells, and disappears upon lens detachment. In conjunction with earlier work (Washausen et al. in Dev Biol 278:86–102, 2005) our findings suggest that apoptosis contributes repeatedly to the disintegration of the panplacodal primordium, to the elimination of subsets of premigratory placodal neuroblasts, and to the regression of placodes

    Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development

    Get PDF
    Preplacodal ectoderm arises near the end of gastrulation as a narrow band of cells surrounding the anterior neural plate. This domain later resolves into discrete cranial placodes that, together with neural crest, produce paired sensory structures of the head. Unlike the better-characterized neural crest, little is known about early regulation of preplacodal development. Classical models of ectodermal patterning posit that preplacodal identity is specified by readout of a discrete level of Bmp signaling along a DV gradient. More recent studies indicate that Bmp-antagonists are critical for promoting preplacodal development. However, it is unclear whether Bmp-antagonists establish the proper level of Bmp signaling within a morphogen gradient or, alternatively, block Bmp altogether. To begin addressing these issues, we treated zebrafish embryos with a pharmacological inhibitor of Bmp, sometimes combined with heat shock-induction of Chordin and dominant-negative Bmp receptor, to fully block Bmp signaling at various developmental stages. We find that preplacodal development occurs in two phases with opposing Bmp requirements. Initially, Bmp is required before gastrulation to co-induce four transcription factors, Tfap2a, Tfap2c, Foxi1, and Gata3, which establish preplacodal competence throughout the nonneural ectoderm. Subsequently, Bmp must be fully blocked in late gastrulation by dorsally expressed Bmp-antagonists, together with dorsally expressed Fgf and Pdgf, to specify preplacodal identity within competent cells abutting the neural plate. Localized ventral misexpression of Fgf8 and Chordin can activate ectopic preplacodal development anywhere within the zone of competence, whereas dorsal misexpression of one or more competence factors can activate ectopic preplacodal development in the neural plate. Conversely, morpholino-knockdown of competence factors specifically ablates preplacodal development. Our work supports a relatively simple two-step model that traces regulation of preplacodal development to late blastula stage, resolves two distinct phases of Bmp dependence, and identifies the main factors required for preplacodal competence and specification

    Striking parallels between carotid body glomus cell and adrenal chromaffin cell development

    No full text
    Carotid body glomus cells mediate essential reflex responses to arterial blood hypoxia. They are dopaminergic and secrete growth factors that support dopaminergic neurons, making the carotid body a potential source of patient-specific cells for Parkinson's disease therapy. Like adrenal chromaffin cells, which are also hypoxia-sensitive, glomus cells are neural crest-derived and require the transcription factors Ascl1 and Phox2b; otherwise, their development is little understood at the molecular level. Here, analysis in chicken and mouse reveals further striking molecular parallels, though also some differences, between glomus and adrenal chromaffin cell development. Moreover, histology has long suggested that glomus cell precursors are ‘émigrés’ from neighbouring ganglia/nerves, while multipotent nerve-associated glial cells are now known to make a significant contribution to the adrenal chromaffin cell population in the mouse. We present conditional genetic lineage-tracing data from mice supporting the hypothesis that progenitors expressing the glial marker proteolipid protein 1, presumably located in adjacent ganglia/nerves, also contribute to glomus cells. Finally, we resolve a paradox for the ‘émigré’ hypothesis in the chicken - where the nearest ganglion to the carotid body is the nodose, in which the satellite glia are neural crest-derived, but the neurons are almost entirely placode-derived - by fate-mapping putative nodose neuronal 'émigrés' to the neural crest
    corecore