17 research outputs found
Kollisjonsdeteksjon og -respons ved animasjon av tekstiler og klĂŠr
Oppgaven bestÄr i Ä studere metodene som brukes for Ä detektere kollisjoner ved animasjon av tekstiler og klÊr og hvordan det gies respons nÄr kollisjon er fastslÄtt
Collision detection and -respons.
Oppgaven bestÄr i Ä studere metodene som brukes for Ä detektere kollisjoner ved animasjon av tekstiler og klÊr og hvordan det gies respons nÄr kollisjon er fastslÄtt
A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study
Background
Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency.
Aims
To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans.
Methods
Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded.
Results
Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered.
Conclusions
Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation
A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study
Background
Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency.
Aims
To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans.
Methods
Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded.
Results
Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered.
Conclusions
Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation
Using the CustusX toolkit to create an image guided bronchoscopy application: Fraxinus
Purpose
The aim of this paper is to show how a specialized planning and guidance application called Fraxinus, can be built on top of the CustusX platform (www.custusx.org), which is an open source image-guided intervention software platform. Fraxinus has been customized to meet the clinical needs in navigated bronchoscopy.
Methods
The application requirements for Fraxinus were defined in close collaboration between research scientists, software developers and clinicians (pulmonologists), and built on top of CustusX. Its superbuild system downloads specific versions of the required libraries and builds them for the application in question, including the selected plugins. New functionality is easily added through the plugin framework. The build process enables the creation of specialized applications, adding additional documentation and custom configurations. The toolkitâs libraries offer building blocks for image-guided applications. An iterative development process was applied, where the clinicians would test and provide feedback during the entire process.
Results
Fraxinus has been developed and is released as an open source planning and guidance application built on top of CustusX. It is highly specialized for bronchoscopy. The proposed workflow is adapted to the different steps in this procedure. The user interface of CustusX has been modified to enhance information, quality assurance and user friendliness with the intention to increase the overall yield for the patient. As the workflow of the procedure is relatively constant, some actions are predicted and automatically performed by the application, according to the requirements from the clinicians.
Conclusions
The CustusX platform facilitates development of new and specialized applications. The toolkit supports the process and makes important extension and injection points available for customization.publishedVersio
Using the CustusX toolkit to create an image guided bronchoscopy application: Fraxinus
Purpose
The aim of this paper is to show how a specialized planning and guidance application called Fraxinus, can be built on top of the CustusX platform (www.custusx.org), which is an open source image-guided intervention software platform. Fraxinus has been customized to meet the clinical needs in navigated bronchoscopy.
Methods
The application requirements for Fraxinus were defined in close collaboration between research scientists, software developers and clinicians (pulmonologists), and built on top of CustusX. Its superbuild system downloads specific versions of the required libraries and builds them for the application in question, including the selected plugins. New functionality is easily added through the plugin framework. The build process enables the creation of specialized applications, adding additional documentation and custom configurations. The toolkitâs libraries offer building blocks for image-guided applications. An iterative development process was applied, where the clinicians would test and provide feedback during the entire process.
Results
Fraxinus has been developed and is released as an open source planning and guidance application built on top of CustusX. It is highly specialized for bronchoscopy. The proposed workflow is adapted to the different steps in this procedure. The user interface of CustusX has been modified to enhance information, quality assurance and user friendliness with the intention to increase the overall yield for the patient. As the workflow of the procedure is relatively constant, some actions are predicted and automatically performed by the application, according to the requirements from the clinicians.
Conclusions
The CustusX platform facilitates development of new and specialized applications. The toolkit supports the process and makes important extension and injection points available for customization.publishedVersio
Navigation system accuracy, patient 3.
<p>(C, D) Orthogonal EBUS planes were projected on top of corresponding planes from the segmented CT models. Here, the axial plane is chosen for method illustration. (B, D) The EBUS and CT position of a 10R lymph node and the superior vena cava after manual shift correction. The resulting position deviation between EBUS and CT was combined for three planes, representing the navigation system accuracy. RMB = Right main bronchus. VCS = Superior vena cava.</p
Schematic operating room setup during navigated EBUS-TBNA.
<p>Preoperative images in DICOM format were imported into the navigation software, and matched to the patientâs position during bronchoscopy (EM-CT-patient registration). When maneuvering the bronchoscope within the electromagnetic tracking (EM) field, the position of the bronchoscope sensor (BS) and EBUS images could be acquired in the navigation system. A reference electromagnetic sensor (RS) was attached on the table.</p
Electromagnetic navigated EBUS-TBNA, procedure workflow.
<p>Preoperative preparations included target definition, CT model extraction and image import into the navigation software. During the EBUS procedure, image-to-patient registration was performed using an automatic algorithm in the navigation software. A combination of video, electromagnetic navigated bronchoscopy (ENB) and EBUS was used for target localization and confirmation before EBUS guided fine needle sampling. A variety of options existed for image reconstruction during the procedure or postoperatively.</p