5 research outputs found

    EMERGENCE OF NEW STRAINS OF SARS-COV-2: AFRICA’S FATE AND ITS PREPAREDNESS AGAINST COVID-19 INFECTION WAVES

    Get PDF
    Background: Severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has infected over 100million individuals worldwide with diverse impacts on nations. The rising cases of new strains and resultant infection waves create an urgent need to assess the readiness of countries especially in Africa to mitigate the impact on community transmission. This paper delivers a brief synopsis of the novel SARS-CoV-2, emerging cases of new variants reported worldwide, and implications for genetic surveillance of disease transmission in low-and middle-income countries (LMICs) especially Africa. Materials and Methods: Literature search used keywords like SARS-CoV-2; COVID-19 epidemiology; pandemic waves; corona outbreak, clinical syndromes, treatments, prevention and control. Cross-sectional and observational studies published on COVID-19 from 2019 till date of study provided main information sources. Databases such as Web of Science, Embase, PubMed and Google Scholar were utilised. Main findings: Over 220 countries have documented COVID-19 cases with varied severity till date. Before the spikes in resurgence, a highly virulent mutated (>90% fatality rate) novel strain of COVID-19 had been documented. There is very little data to ascertain the impact of the COVID-19 infection waves in LMICs. Discussion: LMICs especially African countries still grapple with significant challenges like inefficient surveillance mechanisms, inadequate vaccination coverage, inadequate enforcement of environmental health strategies, poor health systems etc. Hence, Africa’s fate remains dicey in the face of the dynamic evolution of the SARS-CoV-2 and other identified challenges. Conclusion:  The adoption of a multidisciplinary approach to mitigate the impact of emergence of mutant SARS-CoV-2 variants and resurgence of infection spike is recommende

    Detection and circulation of hepatitis B virus immune escape mutants among asymptomatic community dwellers in Ibadan, southwestern Nigeria

    Get PDF
    Background: In 2012, the first Nigerian Hepatitis B Virus (HBV) immune escape mutant (IEM) case was detected in a pregnant woman in southwestern Nigeria. Consequently, this study was designed to investigate the presence and possible circulation of IEMs amongst asymptomatic community dwellers in southwestern Nigeria. Methods: Blood specimens collected from 438 asymptomatic community dwellers were screened for HBsAg using ELISA technique. Subsequently, the S-gene was amplified in HBsAg positive samples by a nested PCR protocol, and amplicons sequenced. Isolates were then subtyped by amino acid residues at positions 122, 127, 134 and 160, and genotyped by phylogenetic analysis. Results: Of the 31 (7.08%) samples positive for HBsAg, the ∼408 bp Sgene fragment was successfully amplified and sequenced in 27. Samples obtained from 4 patients could not be amplified due to low titres. Sequence data from only 15 of the isolates could be analysed further as eight of the remaining 12 had multiple peaks while the rest three showed no similarity to any HBV gene when subjected to BLAST analysis. Thirteen of the 15 isolates were identified as genotype E. Eleven of which were subtyped as ayw4 while the remaining two could not be subtyped due to sR122Q/P substitutions. The last two isolates that could not be genotyped and subtyped had other mutations in the “a” determinant associated with IEMs. Conclusions: This study confirmed presence and circulation of HBV IEM in Nigeria, the country's inclusion in the genotype E crescent, and the value of phylogenetic analysis in HBV identification

    A multi-country phase 2 study to evaluate the suitcase lab for rapid detection of SARS-CoV-2 in seven Sub-Saharan African countries: Lessons from the field

    Get PDF
    From Elsevier via Jisc Publications RouterHistory: issued 2023-03-03Article version: AMPaul Kadetz - ORCID: 0000-0002-2824-1856 https://orcid.org/0000-0002-2824-1856Background : The COVID-19 pandemic led to severe health systems collapse, as well as logistics and supply delivery shortages across sectors. Delivery of PCR related healthcare supplies continue to be hindered. There is the need for a rapid and accessible SARS-CoV-2 molecular detection method in low resource settings. Objectives : To validate a novel isothermal amplification method for rapid detection of SARS-CoV-2 across seven sub-Sharan African countries. Study design : In this multi-country phase 2 diagnostic study, 3,231 clinical samples in seven African sites were tested with two reverse transcription Recombinase-Aided Amplification (RT-RAA) assays (based on SARS-CoV-2 Nucleocapsid (N) gene and RNA-dependent RNA polymerase (RdRP) gene). The test was performed in a mobile suitcase laboratory within 15 minutes. All results were compared to a real-time RT-PCR assay. Extraction kits based on silica gel or magnetic beads were applied. Results : Four sites demonstrated good to excellent agreement, while three sites showed fair to moderate results. The RdRP gene assay exhibited an overall PPV of 0.92 and a NPV of 0.88. The N gene assay exhibited an overall PPV of 0.93 and a NPV 0.88. The sensitivity of both RT-RAA assays varied depending on the sample Ct values. When comparing sensitivity between sites, values differed considerably. For high viral load samples, the RT-RAA assay sensitivity ranges were between 60.5 and 100% (RdRP assay) and 25 and 98.6 (N assay). Conclusion : Overall, the RdRP based RT-RAA test showed the best assay accuracy. This study highlights the challenges of implementing rapid molecular assays in field conditions. Factors that are important for successful deployment across countries include the implementation of standardized operation procedures, in-person continuous training for staff, and enhanced quality control measures.inpressinpres
    corecore