7 research outputs found

    Unprecedented formation of sterically stabilized phospholipid liposomes of cuboidal morphology

    No full text
    Sterically stabilized phospholipid liposomes of unprecedented cuboid morphology are formed upon introduction in the bilayer membrane of original polymers, based on polyglycidol bearing a lipid-mimetic residue. Strong hydrogen bonding in the polyglycidol sublayers creates attractive forces, which, facilitated by fluidization of the membrane, bring about the flattening of the bilayers and the formation of cuboid vesicles

    Nanostructures by self-assembly of polyglycidol-derivatized lipids

    No full text
    In this work we report on the self-assembly of five non-phospholipid polyglycidol conjugates in aqueous solution. The polymers are composed of a linear polyglycidol chain (degrees of polymerization, DP, are in the 8–110 range) linked to a strongly hydrophobic lipid-mimetic residue. Their behavior in dilute aqueous solution is investigated by a combination of experimental techniques – UV-vis spectroscopy, static and dynamic light scattering, fluorescence measurements, conventional and cryogenic transmission electron microscopy, and small angle X-ray scattering. The polymers spontaneously self-associate above a certain critical concentration, which depends on polyglycidol DP and temperature. According to the thermodynamic data, the self-assembly is an enthalpically disfavored endothermic process, driven by positive entropy contribution. The polymers with polyglycidol DP of 23 and above form small core–corona micelles. The latter are parameterized and the experimental values are compared to those of micelles of the commercially available poly(ethylene glycol)-derivatized lipids and other related non-phospholipid poly(ethylene glycol) conjugates. The polymer of the lowest polyglycidol DP form lamellar structures of co-existing morphology – spherical vesicles and highly anisotropic, elongated bilayer flakes

    Original Synthesis of a Nucleolipid for Preparation of Vesicular Spherical Nucleic Acids

    No full text
    Spherical nucleic acids (SNAs)—nanostructures, consisting of a nanoparticle core densely functionalized with a shell of short oligonucleotide strands—are a rapidly emerging class of nanoparticle-based therapeutics with unique properties and specific applications as drug and nucleic acid delivery and gene regulation materials. In this contribution, we report on the preparation of hollow SNA nanoconstructs by co-assembly of an originally synthesized nucleolipid—a hybrid biomacromolecule, composed of a lipidic residue, covalently linked to a DNA oligonucleotide strand—with other lipids. The nucleolipid was synthesized via a click chemistry approach employing initiator-free, UV light-induced thiol-ene coupling of appropriately functionalized intermediates, performed in mild conditions using a custom-made UV light-emitting device. The SNA nanoconstructs were of a vesicular structure consisting of a self-closed bilayer membrane in which the nucleolipid was intercalated via its lipid–mimetic residue. They were in the lower nanometer size range, moderately negatively charged, and were found to carry thousands of oligonucleotide strands per particle, corresponding to a grafting density comparable to that of other SNA structures. The surface density of the strands on the bilayer implied that they adopted an unextended conformation. We demonstrated that preformed vesicular structures could be successfully loaded with either hydrophilic or hydrophobic dyes
    corecore