7 research outputs found

    Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma haematobium

    Get PDF
    Accurate diagnosis of urogenital schistosomiasis is vital for surveillance and control programmes. While a number of diagnostic techniques are available there is a need for simple, rapid and highly sensitive point-of-need (PON) tests in areas where infection prevalence and intensity are low. Recombinase Polymerase Amplification (RPA) is a sensitive isothermal molecular diagnostic technology that is rapid, portable and has been used at the PON for several pathogens.; A real time fluorescence RPA assay (RT-ShDra1-RPA) targeting the Schistosoma haematobium Dra1 genomic repeat region was developed and was able to detect 1 fg of S. haematobium gDNA. Results were obtained within 10 minutes using a small portable battery powered tube scanner device that incubated reactions at 40 °C, whilst detecting DNA amplification and fluorescence over time. The assay's performance was evaluated using 20 urine samples, with varying S. haematobium egg counts, from school children from Pemba Island, Zanzibar Archipelago, Tanzania. Prior to RPA analysis, samples were prepared using a quick crude field DNA extraction method, the Speed Extract Kit (Qiagen, Manchester, UK). Positive assay results were obtained from urine samples with egg counts of 1-926 eggs/10 ml, except for two samples, which had inconclusive results. These two samples had egg counts of two and three eggs/10 ml of urine.; The RT-ShDra1-RPA assay proved robust for S. haematobium gDNA detection and was able to amplify and detect S. haematobium DNA in urine samples from infected patients. The assay's speed and portability, together with the use of crude sample preparation methods, could advance the rapid molecular diagnosis of urogenital schistosomiasis at the PON within endemic countries

    Correction to: Urogenital schistosomiasis elimination in Zanzibar: accuracy of urine filtration and haematuria reagent strips for diagnosing light intensity Schistosoma haematobium infections

    Get PDF
    Following publication of the original article [1], the authors flagged that unfortunately an error had been introduced to the Conclusions section of the article's Abstract, during production of the article

    Analytical and clinical assessment of a portable, isothermal Recombinase Polymerase Amplification (RPA) assay for the molecular diagnosis of urogenital schistosomiasis

    Get PDF
    Accurate diagnosis of urogenital schistosomiasis is crucial for disease surveillance and control. Routine diagnostic methods, however, lack sensitivity when assessing patients with low levels of infection still able to maintain pathogen transmission. Therefore, there is a need for highly sensitive diagnostic tools that can be used at the point-of-care in endemic areas. Recombinase polymerase amplification (RPA) is a rapid and sensitive diagnostic tool that has been used to diagnose several pathogens at the point-of-care. Here, the analytical performance of a previously developed RPA assay (RT-ShDra1-RPA) targeting the; Schistosoma haematobium; Dra1 genomic region was assessed using commercially synthesised; S. haematobium; Dra1 copies and laboratory-prepared samples spiked with; S. haematobium; eggs. Clinical performance was also assessed by comparing diagnostic outcomes with that of a reference diagnostic standard, urine-egg microscopy. The RT-ShDra1-RPA was able to detect 1 × 10; 1; copies of commercially synthesised Dra1 DNA as well as one; S. haematobium; egg within laboratory-spiked ddH; 2; O samples. When compared with urine-egg microscopy, the overall sensitivity and specificity of the RT-ShDra1-RPA assay was 93.7% (±88.7-96.9) and 100% (±69.1-100), respectively. Positive and negative predictive values were 100% (±97.5-100) and 50% (±27.2-72.8), respectively. The RT-ShDra1-RPA therefore shows promise as a rapid and highly sensitive diagnostic tool able to diagnose urogenital schistosomiasis at the point-of-care

    Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma haematobium

    Get PDF
    Abstract Background Accurate diagnosis of urogenital schistosomiasis is vital for surveillance and control programmes. While a number of diagnostic techniques are available there is a need for simple, rapid and highly sensitive point-of-need (PON) tests in areas where infection prevalence and intensity are low. Recombinase Polymerase Amplification (RPA) is a sensitive isothermal molecular diagnostic technology that is rapid, portable and has been used at the PON for several pathogens. Results A real time fluorescence RPA assay (RT-ShDra1-RPA) targeting the Schistosoma haematobium Dra1 genomic repeat region was developed and was able to detect 1 fg of S. haematobium gDNA. Results were obtained within 10 minutes using a small portable battery powered tube scanner device that incubated reactions at 40 °C, whilst detecting DNA amplification and fluorescence over time. The assay’s performance was evaluated using 20 urine samples, with varying S. haematobium egg counts, from school children from Pemba Island, Zanzibar Archipelago, Tanzania. Prior to RPA analysis, samples were prepared using a quick crude field DNA extraction method, the Speed Extract Kit (Qiagen, Manchester, UK). Positive assay results were obtained from urine samples with egg counts of 1–926 eggs/10 ml, except for two samples, which had inconclusive results. These two samples had egg counts of two and three eggs/10 ml of urine. Conclusions The RT-ShDra1-RPA assay proved robust for S. haematobium gDNA detection and was able to amplify and detect S. haematobium DNA in urine samples from infected patients. The assay’s speed and portability, together with the use of crude sample preparation methods, could advance the rapid molecular diagnosis of urogenital schistosomiasis at the PON within endemic countries.Copyright © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Urogenital schistosomiasis elimination in Zanzibar: accuracy of urine filtration and haematuria reagent strips for diagnosing light intensity Schistosoma haematobium infections

    Get PDF
    Abstract Background Urine filtration and microhaematuria reagent strips are basic standard diagnostic methods to detect urogenital schistosomiasis. We assessed their accuracy for the diagnosis of light intensity infections with Schistosoma haematobium as they occur in individuals living in Zanzibar, an area targeted for interruption of transmission. Methods Urine samples were collected from children and adults in surveys conducted annually in Zanzibar from 2013 through 2016 and examined with the urine filtration method to count S. haematobium eggs and with the reagent strip test (Hemastix) to detect microhaematuria as a proxy for infection. Ten percent of the urine filtration slides were read twice. Sensitivity was calculated for reagent strips, stratified by egg counts reflecting light intensity sub-groups, and kappa statistics for the agreement of urine filtration readings. Results Among the 39,207 and 18,155 urine samples examined from children and adults, respectively, 5.4% and 2.7% were S. haematobium egg-positive. A third (34.7%) and almost half (46.7%) of the egg-positive samples from children and adults, respectively, had ultra-low counts defined as 1–5 eggs per 10 ml urine. Sensitivity of the reagent strips increased significantly for each unit log10 egg count per 10 ml urine in children (odds ratio, OR: 4.7; 95% confidence interval, CI: 4.0–5.7; P < 0.0001) and adults (OR: 2.6; 95% CI: 1.9–3.7, P < 0.0001). Sensitivity for diagnosing ultra-light intensity infections was very low in children (50.1%; 95% CI: 46.5–53.8%) and adults (58.7%; 95% CI: 51.9–65.2%). Among the 4477 and 1566 urine filtration slides read twice from children and adults, most were correctly identified as negative or positive (kappa = 0.84 for children and kappa = 0.81 for adults). However, 294 and 75 slides had discrepant results and were positive in only one of the two readings. The majority of these discrepant slides (76.9% of children and 84.0% of adults) had counts of 1–5 eggs per 10 ml urine. Conclusions We found that many individuals infected with S. haematobium in Zanzibar excrete less than 5 eggs per 10 ml urine. These ultra-light infections impose a major challenge for accurate diagnosis. Next-generation diagnostic tools to be used in settings where interruption of transmission is the goal should reliably detect infections with ≤ 5 eggs per 10 ml urine. Trial Registration ISRCTN, ISRCTN48837681. Registered 05 September 2012 - Retrospectively registered
    corecore