1,261 research outputs found

    The sensitivity of oceanic precipitation to sea surface temperature

    No full text
    Our study forms the oceanic counterpart to numerous observational studies over land concerning the sensitivity of extreme precipitation to a change in air temperature. We explore the sensitivity of oceanic precipitation to changing sea surface temperature (SST) by exploiting two novel datasets at high resolution. First, we use the Ocean Rainfall And Ice-phase precipitation measurement Network (OceanRAIN) as an observational along-track shipboard dataset at 1 min resolution. Second, we exploit the most recent European Reanalysis version 5 (ERA5) at hourly resolution on a 31 km grid. Matched with each other, ERA5 vertical velocity allows the constraint of the OceanRAIN precipitation. Despite the inhomogeneous sampling along ship tracks, OceanRAIN agrees with ERA5 on the average latitudinal distribution of precipitation with fairly good seasonal sampling. However, the 99th percentile of OceanRAIN precipitation follows a super Clausius–Clapeyron scaling with a SST that exceeds 8.5 % K−1 while ERA5 precipitation scales with 4.5 % K−1. The sensitivity decreases towards lower precipitation percentiles, while OceanRAIN keeps an almost constant offset to ERA5 due to higher spatial resolution and temporal sampling. Unlike over land, we find no evidence for a decreasing precipitation event duration with increasing SST. ERA5 precipitation reaches a local minimum at about 26 ∘C that vanishes when constraining vertical velocity to strongly rising motion and excluding areas of weak correlation between precipitation and vertical velocity. This indicates that instead of moisture limitations as over land, circulation dynamics rather limit precipitation formation over the ocean. For the strongest rising motion, precipitation scaling converges to a constant value at all precipitation percentiles. Overall, high resolutions in observations and climate models are key to understanding and predicting the sensitivity of oceanic precipitation extremes to a change in SST

    Is the aerosol emission detectable in the thermal infrared

    Get PDF
    The impact of aerosols on the thermal infrared radiation can be assessed by combining observations and radiative transfer calculations. Both have uncertainties, which are discussed in this paper. Observational uncertainties are obtained for two FTIR instruments operated side by side on the ground during the LACE 1998 field campaign. Radiative transfer uncertainties are assessed using a line-by-line model taking into account the uncertainties of the HITRAN 2004 spectroscopic database, uncertainties in the determination of the atmospheric profiles of water vapor and ozone, and differences in the treatment of the water vapor continuum absorption by the CKD 2.4.1 and MT_CKD 1.0 algorithms. The software package OPAC was used to describe the optical properties of aerosols for climate modeling. The corresponding radiative signature is a guideline to the assessment of the uncertainty ranges of observations and models. We found that the detection of aerosols depends strongly on the measurement accuracy of atmospheric profiles of water vapor and ozone and is easier for drier conditions. Within the atmospheric window, only the forcing of downward radiation at the surface by desert aerosol emerges clearly from the uncertainties of modeling and FTIR measurement. Urban and polluted continental aerosols are only partially detectable depending on the wave number and on the atmospheric water vapor amount. Simulations for the space-borne interferometer IASI show that only upward radiation above transported mineral dust aloft emerges out of the uncertainties. The detection of aerosols with weak radiative impact by FTIR instruments like ARIES and OASIS is made difficult by noise as demonstrated by the signal to noise ratio for clean continental aerosols. Altogether, the uncertainties found suggest that it is difficult to detect the optical depths of nonmineral and unpolluted aerosols

    Simulation of ship-track versus satellite-sensor differences in oceanic precipitation using an island-based radar

    Get PDF
    The point-to-area problem strongly complicates the validation of satellite-based precipitation estimates, using surface-based point measurements. We simulate the limited spatial representation of light to moderate oceanic precipitation rates along ship tracks with respect to areal passive microwave satellite estimates using data from a subtropical island-based radar. The radar data serves to estimate the discrepancy between point-like and areal precipitation measurements. From the spatial discrepancy, two statistical adjustments are derived so that along-track precipitation ship data better represents areal precipitation estimates from satellite sensors. The first statistical adjustment uses the average duration of a precipitation event as seen along a ship track and the second adjustment uses the median-normalized along-track precipitation rate. Both statistical adjustments combined reduce the root mean squared error by 0.24 mm h 10 (55%) compared to the unadjusted average track of 60 radar pixels in length corresponding to a typical ship speed of 24–34 km h depending on track orientation. Beyond along-track averaging, the statistical adjustments represent an important step towards a more accurate validation of precipitation derived from passive microwave satellite sensors using point-like along-track surface precipitation reference data

    Activation Energy of Metastable Amorphous Ge2Sb2Te5 from Room Temperature to Melt

    Full text link
    Resistivity of metastable amorphous Ge2Sb2Te5 (GST) measured at device level show an exponential decline with temperature matching with the steady-state thin-film resistivity measured at 858 K (melting temperature). This suggests that the free carrier activation mechanisms form a continuum in a large temperature scale (300 K - 858 K) and the metastable amorphous phase can be treated as a super-cooled liquid. The effective activation energy calculated using the resistivity versus temperature data follow a parabolic behavior, with a room temperature value of 333 meV, peaking to ~377 meV at ~465 K and reaching zero at ~930 K, using a reference activation energy of 111 meV (3kBT/2) at melt. Amorphous GST is expected to behave as a p-type semiconductor at Tmelt ~ 858 K and transitions from the semiconducting-liquid phase to the metallic-liquid phase at ~ 930 K at equilibrium. The simultaneous Seebeck (S) and resistivity versus temperature measurements of amorphous-fcc mixed-phase GST thin-films show linear S-T trends that meet S = 0 at 0 K, consistent with degenerate semiconductors, and the dS/dT and room temperature activation energy show a linear correlation. The single-crystal fcc is calculated to have dS/dT = 0.153 {\mu}V/K for an activation energy of zero and a Fermi level 0.16 eV below the valance band edge.Comment: 5 pages, 5 figure

    Evaluation of HOAPS-3 ocean surface freshwater flux components

    Get PDF
    Today, latent heat flux and precipitation over the global ocean surface can be determined from microwave satellite data as a basis for estimating the related fields of the ocean surface freshwater flux. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS) is the only generally available satellite-based dataset with consistently derived global fields of both evaporation and precipitation and hence of freshwater flux for the period 1987–2005. This paper presents a comparison of the evaporation E, precipitation P, and the resulting freshwater flux E − P in HOAPS with recently available reference datasets from reanalysis and other satellite observation projects as well as in situ ship measurements. In addition, the humidity and wind speed input parameters for the evaporation are examined to identify sources for differences between the datasets. Results show that the general climatological patterns are reproduced by all datasets. Global mean time series often agree within about 10% of the individual products, while locally larger deviations may be found for all parameters. HOAPS often agrees better with the other satellite-derived datasets than with the in situ or the reanalysis data. The agreement usually improves in regions of good in situ sampling statistics. The biggest deviations of the evaporation parameter result from differences in the near-surface humidity estimates. The precipitation datasets exhibit large differences in highly variable regimes with the largest absolute differences in the ITCZ and the largest relative biases in the extratropical storm-track regions. The resulting freshwater flux estimates exhibit distinct differences in terms of global averages as well as regional biases. In comparison with long-term mean global river runoff data, the ocean surface freshwater balance is not closed by any of the compared fields. The datasets exhibit a positive bias in E − P of 0.2–0.5 mm day−1, which is on the order of 10% of the evaporation and precipitation estimates

    Passive remote sensing of columnar water vapour content above land surfaces. Part I: Theoretical algorithm development - Part II: Comparison of OVID measurements with radiosonde and DIAL measurements

    Get PDF
    Various efforts are currently being made to develop remote sensing techniques for high accuracy determination of atmospheric columnar water vapour content above land surfaces. Most of those algorithms are based on radiative transfer calcu lations, however, which have to be verified by spectral airborne or satellite measurements. Initial verification of a new algorithm with the aid of airborne spectral data using the spectrometer OVID (Optical Visible and near Infrared Detector), an airborne water vapour DIAL (Differential Absorption Lidar), an airc;raft humicap sensor and radiosonde data is performed dUIing a flight experiment over Southern Germany. This water vapour algorithm is also dedicated to the MERIS (MEdium Resolution Imaging Spectrometer) in strument on board ESA's satellite ENVISAT which will be launched 1999. Spatial water vapour gradients of &120 = 0.1 g/cm2 over a distance of 100 km were resolved by applying the OVID measurements. The error estimation of the absolute value of the retrieved water vapour contents poses· some problems due to insufficient additional temporal and spatial radiosonde data. However, the principal feasibility has been prove

    Structured matrices, continued fractions, and root localization of polynomials

    Full text link
    We give a detailed account of various connections between several classes of objects: Hankel, Hurwitz, Toeplitz, Vandermonde and other structured matrices, Stietjes and Jacobi-type continued fractions, Cauchy indices, moment problems, total positivity, and root localization of univariate polynomials. Along with a survey of many classical facts, we provide a number of new results.Comment: 79 pages; new material added to the Introductio

    The BP Deepwater Horizon débâcle and corporate brand exuberance

    Get PDF
    This article is available to download from the publisher’s website at the link below.No abstract available (Editorial)

    Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023

    Get PDF
    Supporting information for the article: [https://doi.org/10.1016/j.jeurceramsoc.2017.12.023].Related to the peer-reviewed manuscript: [https://hdl.handle.net/21.15107/rcub_dais_4924]Related to the published version: [https://hdl.handle.net/21.15107/rcub_dais_3357
    • …
    corecore