10 research outputs found

    Emery–Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure

    Get PDF
    Cardiomyopathy; Heart failure; Ventricular arrhythmiaMiocardiopatía; Insuficiencia cardiaca; Arritmia ventricularMiocardiopatia; Insuficiència cardíaca; Arrítmia ventricularBackground and Aims Emery–Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterize the cardiac complications of EMD variants. Methods Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidences in male and female variant-carriers were determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared with consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). Results Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers [mean (SD) ages 33.4 (13.3) and 43.3 (16.8) years, respectively]. Nine (23.7%) males developed MVA and five (13.2%) developed ESHF during a median (inter-quartile range) follow-up of 65.0 (24.3–109.5) months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median (inter-quartile range) age of 58.6 (53.2–60.4) years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank P = .49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank P = .09). Conclusions Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.The work reported in this publication was funded by: a British Heart Foundation Clinical Research Training Fellowship to D.E.C. (FS/CRTF/20/24022); a British Heart Foundation Clinical Research Training fellowship to A.P. (FS/18/82/34024); The Ministry of Health, Italy, project RC-2022-2773270 to E.B.; the National Institutes of Health (NIH) (R01HL69071, R01HL116906, R01HL147064, NIH/NCATS UL1 TR002535, and UL1 TR001082) to L.M.; and support from the Rose Foundation for K.M

    Microstructural and Microvascular Phenotype of Sarcomere Mutation Carriers and Overt Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: In hypertrophic cardiomyopathy (HCM), myocyte disarray and microvascular disease (MVD) have been implicated in adverse events, and recent evidence suggests that these may occur early. As novel therapy provides promise for disease modification, detection of phenotype development is an emerging priority. To evaluate their utility as early and disease-specific biomarkers, we measured myocardial microstructure and MVD in 3 HCM groups-overt, either genotype-positive (G+LVH+) or genotype-negative (G-LVH+), and subclinical (G+LVH-) HCM-exploring relationships with electrical changes and genetic substrate. METHODS: This was a multicenter collaboration to study 206 subjects: 101 patients with overt HCM (51 G+LVH+ and 50 G-LVH+), 77 patients with G+LVH-, and 28 matched healthy volunteers. All underwent 12-lead ECG, quantitative perfusion cardiac magnetic resonance imaging (measuring myocardial blood flow, myocardial perfusion reserve, and perfusion defects), and cardiac diffusion tensor imaging measuring fractional anisotropy (lower values expected with more disarray), mean diffusivity (reflecting myocyte packing/interstitial expansion), and second eigenvector angle (measuring sheetlet orientation). RESULTS: Compared with healthy volunteers, patients with overt HCM had evidence of altered microstructure (lower fractional anisotropy, higher mean diffusivity, and higher second eigenvector angle; all P<0.001) and MVD (lower stress myocardial blood flow and myocardial perfusion reserve; both P<0.001). Patients with G-LVH+ were similar to those with G+LVH+ but had elevated second eigenvector angle (P<0.001 after adjustment for left ventricular hypertrophy and fibrosis). In overt disease, perfusion defects were found in all G+ but not all G- patients (100% [51/51] versus 82% [41/50]; P=0.001). Patients with G+LVH- compared with healthy volunteers similarly had altered microstructure, although to a lesser extent (all diffusion tensor imaging parameters; P<0.001), and MVD (reduced stress myocardial blood flow [P=0.015] with perfusion defects in 28% versus 0 healthy volunteers [P=0.002]). Disarray and MVD were independently associated with pathological electrocardiographic abnormalities in both overt and subclinical disease after adjustment for fibrosis and left ventricular hypertrophy (overt: fractional anisotropy: odds ratio for an abnormal ECG, 3.3, P=0.01; stress myocardial blood flow: odds ratio, 2.8, P=0.015; subclinical: fractional anisotropy odds ratio, 4.0, P=0.001; myocardial perfusion reserve odds ratio, 2.2, P=0.049). CONCLUSIONS: Microstructural alteration and MVD occur in overt HCM and are different in G+ and G- patients. Both also occur in the absence of hypertrophy in sarcomeric mutation carriers, in whom changes are associated with electrocardiographic abnormalities. Measurable changes in myocardial microstructure and microvascular function are early-phenotype biomarkers in the emerging era of disease-modifying therapy

    Emery-Dreifuss muscular dystrophy Type 1 is associated with a high risk of malignant ventricular arrhythmias and end-stage heart failure

    Get PDF
    BACKGROUND AND AIMS: Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants. METHODS: Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS: Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09). CONCLUSIONS: Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease

    Emery-Dreifuss Muscular Dystrophy 1 is associated with high risk of malignant ventricular arrhythmias and end-stage heart failure.

    Get PDF
    BACKGROUND AND AIMS Emery-Dreifuss muscular dystrophy (EDMD) is caused by variants in EMD (EDMD1) and LMNA (EDMD2). Cardiac conduction defects and atrial arrhythmia are common to both, but LMNA variants also cause end-stage heart failure (ESHF) and malignant ventricular arrhythmia (MVA). This study aimed to better characterise the cardiac complications of EMD variants. METHODS Consecutively referred EMD variant-carriers were retrospectively recruited from 12 international cardiomyopathy units. MVA and ESHF incidence in male and female variant-carriers was determined. Male EMD variant-carriers with a cardiac phenotype at baseline (EMDCARDIAC) were compared to consecutively recruited male LMNA variant-carriers with a cardiac phenotype at baseline (LMNACARDIAC). RESULTS Longitudinal follow-up data were available for 38 male and 21 female EMD variant-carriers (mean [SD] ages 33.4 [13.3] and 43.3 [16.8] years, respectively). Nine (23.6%) males developed MVA and five (13.2%) developed ESHF during a median [IQR] follow-up of 65.0 [24.3, 109.5] months. No female EMD variant-carrier had MVA or ESHF, but nine (42.8%) developed a cardiac phenotype at a median [IQR] age of 58.6 [53.2, 60.4] years. Incidence rates for MVA were similar for EMDCARDIAC and LMNACARDIAC (4.8 and 6.6 per 100 person-years, respectively; log-rank p = 0.49). Incidence rates for ESHF were 2.4 and 5.9 per 100 person-years for EMDCARDIAC and LMNACARDIAC, respectively (log-rank p = 0.09). CONCLUSIONS Male EMD variant-carriers have a risk of progressive heart failure and ventricular arrhythmias similar to that of male LMNA variant-carriers. Early implantable cardioverter defibrillator implantation and heart failure drug therapy should be considered in male EMD variant-carriers with cardiac disease.The work reported in this publication was funded by: a British Heart Foundation Clinical Research Training Fellowship to D.E.C. (FS/CRTF/ 20/24022); a British Heart Foundation Clinical Research Training fellowship to A.P. (FS/18/82/34024); The Ministry of Health, Italy, project RC-2022-2773270 to E.B.; the National Institutes of Health (NIH) (R01HL69071, R01HL116906, R01HL147064, NIH/NCATS UL1 TR002535, and UL1 TR001082) to L.M.; and support from the Rose Foundation for K.M.S

    Risks of Ventricular Arrhythmia and Heart Failure in Carriers of RBM20 Variants

    Get PDF
    BACKGROUND: Variants in RBM20 are reported in 2% to 6% of familial cases of dilated cardiomyopathy and may be associated with fatal ventricular arrhythmia and rapid heart failure progression. We sought to determine the risk of adverse events in RBM20 variant carriers and the impact of sex on outcomes. METHODS: Consecutive probands and relatives carrying RBM20 variants were retrospectively recruited from 12 cardiomyopathy units. The primary end point was a composite of malignant ventricular arrhythmia (MVA) and end-stage heart failure (ESHF). MVA and ESHF end points were also analyzed separately and men and women compared. Left ventricular ejection fraction (LVEF) contemporary to MVA was examined. RBM20 variant carriers with left ventricular systolic dysfunction (RBM20LVSD) were compared with variant-elusive patients with idiopathic left ventricular systolic dysfunction. RESULTS: Longitudinal follow-up data were available for 143 RBM20 variant carriers (71 men; median age, 35.5 years); 7 of 143 had an MVA event at baseline. Thirty of 136 without baseline MVA (22.0%) reached the primary end point, and 16 of 136 (11.8%) had new MVA with no significant difference between men and women (log-rank P=0.07 and P=0.98, respectively). Twenty of 143 (14.0%) developed ESHF (17 men and 3 women; log-rank P&lt;0.001). Four of 10 variant carriers with available LVEF contemporary to MVA had an LVEF &gt;35%. At 5 years, 15 of 67 (22.4%) RBM20LVSD versus 7 of 197 (3.6%) patients with idiopathic left ventricular systolic dysfunction had reached the primary end point (log-rank P&lt;0.001). RBM20 variant carriage conferred a 6.0-fold increase in risk of the primary end point. CONCLUSIONS: RBM20 variants are associated with a high risk of MVA and ESHF compared with idiopathic left ventricular systolic dysfunction. The risk of MVA in male and female RBM20 variant carriers is similar, but male sex is strongly associated with ESHF.</p

    Risks of Ventricular Arrhythmia and Heart Failure in Carriers of RBM20 Variants

    Get PDF
    BACKGROUND: Variants in RBM20 are reported in 2% to 6% of familial cases of dilated cardiomyopathy and may be associated with fatal ventricular arrhythmia and rapid heart failure progression. We sought to determine the risk of adverse events in RBM20 variant carriers and the impact of sex on outcomes. METHODS: Consecutive probands and relatives carrying RBM20 variants were retrospectively recruited from 12 cardiomyopathy units. The primary end point was a composite of malignant ventricular arrhythmia (MVA) and end-stage heart failure (ESHF). MVA and ESHF end points were also analyzed separately and males and females compared. Left ventricular ejection fraction (LVEF) contemporary to MVA was examined. RBM20 variant carriers with left ventricular systolic dysfunction (RBM20LVSD) were compared with variant-elusive patients with idiopathic left ventricular systolic dysfunction. RESULTS: Longitudinal follow-up data were available for 143 RBM20 variant carriers (71 male; median age, 35.5 years); 7 of 143 had an MVA event at baseline. Thirty of 136 without baseline MVA (22.0%) reached the primary end point, and 16 of 136 (11.8%) had new MVA with no significant difference between males and females (log-rank P=0.07 and P=0.98, respectively). Twenty of 143 (14.0%) developed ESHF (17 males and 3 females; log-rank P35%. At 5 years, 15 of 67 (22.4%) RBM20LVSD versus 7 of 197 (3.6%) patients with idiopathic left ventricular systolic dysfunction had reached the primary end point (log-rank P<0.001). RBM20 variant carriage conferred a 6.0-fold increase in risk of the primary end point. CONCLUSIONS: RBM20 variants are associated with a high risk of MVA and ESHF compared with idiopathic left ventricular systolic dysfunction. The risk of MVA in male and female RBM20 variant carriers is similar, but male sex is strongly associated with ESHF

    Importance of genotype for risk stratification in arrhythmogenic right ventricular cardiomyopathy using the 2019 ARVC risk calculator

    Get PDF
    none41siTo study the impact of genotype on the performance of the 2019 risk model for arrhythmogenic right ventricular cardiomyopathy (ARVC).Protonotarios, Alexandros; Bariani, Riccardo; Cappelletto, Chiara; Pavlou, Menelaos; García-García, Alba; Cipriani, Alberto; Protonotarios, Ioannis; Rivas, Adrian; Wittenberg, Regitze; Graziosi, Maddalena; Xylouri, Zafeirenia; Larrañaga-Moreira, José M; de Luca, Antonio; Celeghin, Rudy; Pilichou, Kalliopi; Bakalakos, Athanasios; Lopes, Luis Rocha; Savvatis, Konstantinos; Stolfo, Davide; Dal Ferro, Matteo; Merlo, Marco; Basso, Cristina; Freire, Javier Limeres; Rodriguez-Palomares, Jose F; Kubo, Toru; Ripoll-Vera, Tomas; Barriales-Villa, Roberto; Antoniades, Loizos; Mogensen, Jens; Garcia-Pavia, Pablo; Wahbi, Karim; Biagini, Elena; Anastasakis, Aris; Tsatsopoulou, Adalena; Zorio, Esther; Gimeno, Juan R; Garcia-Pinilla, Jose Manuel; Syrris, Petros; Sinagra, Gianfranco; Bauce, Barbara; Elliott, Perry MProtonotarios, Alexandros; Bariani, Riccardo; Cappelletto, Chiara; Pavlou, Menelaos; García-García, Alba; Cipriani, Alberto; Protonotarios, Ioannis; Rivas, Adrian; Wittenberg, Regitze; Graziosi, Maddalena; Xylouri, Zafeirenia; Larrañaga-Moreira, José M; de Luca, Antonio; Celeghin, Rudy; Pilichou, Kalliopi; Bakalakos, Athanasios; Lopes, Luis Rocha; Savvatis, Konstantinos; Stolfo, Davide; Dal Ferro, Matteo; Merlo, Marco; Basso, Cristina; Freire, Javier Limeres; Rodriguez-Palomares, Jose F; Kubo, Toru; Ripoll-Vera, Tomas; Barriales-Villa, Roberto; Antoniades, Loizos; Mogensen, Jens; Garcia-Pavia, Pablo; Wahbi, Karim; Biagini, Elena; Anastasakis, Aris; Tsatsopoulou, Adalena; Zorio, Esther; Gimeno, Juan R; Garcia-Pinilla, Jose Manuel; Syrris, Petros; Sinagra, Gianfranco; Bauce, Barbara; Elliott, Perry

    Current perspectives on the diagnosis and management of dilated cardiomyopathy Beyond heart failure: a Cardiomyopathy Clinic Doctor's point of view

    No full text
    Left ventricular enlargement and dysfunction are fundamental components of dilated cardiomyopathy (DCM). DCM is a major cause of heart failure and cardiac transplantation. A wide variety of etiologies underlie acquired and familial DCM. Familial disease is reported in 20% to 35% of cases. A genetic substrate is recognized in at least 30% of familial cases. A recently proposed scheme defines DCM as a continuum of subclinical and clinical phenotypes. The evolution of classification systems permitted use of effective treatment strategies in disorders sharing the same structural and functional characteristics and common clinical expression. The major causes of death are progressive heart failure and sudden cardiac death secondary to ventricular arrhythmias or less commonly bradyarrhythmias. Remarkable progress has been made in survival owing to well-defined evidence-based therapies and appropriate guidelines for risk stratification and sudden cardiac death prevention measures. Neurohormonal antagonists and device therapy decreased all-cause mortality in adult patients with DCM. However, additional red flags in diagnosis have to be addressed in everyday practice, and cardiologists have to be aware of the subsequent effect on risk stratification and treatment plan. Genetic substrate cannot be modified, but the presence of a peculiar type of gene mutation modifies thresholds for implantable cardioverter defibrillator (ICD) implantation. DCM is part of the spectrum of heart failure which is a syndrome with certain morphological and functional characteristics. Although significant progress has been achieved in the management of patients with DCM, it seems that the future treatments of this entity will be related to the specific pathological substrate. Keywords: Dilated, Cardiomyopathy, Familial, Genetics, Myocarditi

    Cardiovascular involvement in later-onset malonyl-CoA decarboxylase deficiency: Case studies and literature review

    No full text
    Background: Malonyl-CoA decarboxylase deficiency (MLYCDD) is an ultra-rare inherited metabolic disorder, characterized by multi-organ involvement manifesting during the first few months of life. Our aim was to describe the clinical, biochemical, and genetic characteristics of patients with later-onset malonyl-CoA decarboxylase deficiency.// Methods: Clinical and biochemical characteristics of two patients aged 48 and 29 years with a confirmed molecular diagnosis of MLYCDD were examined. A systematic review of published studies describing the characteristics of cardiovascular involvement of patients with MLYCDD was performed.// Results: Two patients diagnosed with MLYCDD during adulthood were identified. The first presented with hypertrophic cardiomyopathy and ventricular pre-excitation and the second with dilated cardiomyopathy (DCM) and mild-to-moderate left ventricular (LV) systolic dysfunction. No other clinical manifestation typical of MLYCDD was observed. Both patients showed slight increase in malonylcarnitine in their plasma acylcarnitine profile, and a reduction in malonyl-CoA decarboxylase activity. During follow-up, no deterioration of LV systolic function was observed.// The systematic review identified 33 individuals with a genetic diagnosis of MLYCDD (median age 6 months [IQR 1–12], 22 males [67%]). Cardiovascular involvement was observed in 64% of cases, with DCM the most common phenotype. A modified diet combined with levocarnitine supplementation resulted in the improvement of LV systolic function in most cases. After a median follow-up of 8 months, 3 patients died (two heart failure-related and one arrhythmic death).// Conclusions: For the first time this study describes a later-onset phenotype of MLYCDD patients, characterized by single-organ involvement, mildly reduced enzyme activity, and a benign clinical course
    corecore