19 research outputs found

    Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    Get PDF
    Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury

    Redox therapy in neonatal sepsis: reasons, targets, strategy, and agents

    Get PDF
    Neonatal sepsis is one of the most fulminating conditions in neonatal intensive care units. Antipathogen and supportive care are administered routinely, but do not deliver satisfactory results. In addition, the efforts to treat neonatal sepsis with anti-inflammatory agents have generally shown to be futile. The accumulating data imply that intracellular redox changes intertwined into neonatal sepsis redox cycle represent the main cause of dysfunction of mitochondria and cells in neonatal sepsis. Our aim here is to support the new philosophy in neonatal sepsis treatment, which involves the integration of mechanisms that are responsible for cellular dysfunction and organ failure, the recognition of the most important targets, and the selection of safe agents that can stop the neonatal sepsis redox cycle by hitting the hot spots. Redox-active agents that could be beneficial for neonatal sepsis treatment according to these criteria include lactoferrin, interleukin 10, zinc and selenium supplements, ibuprofen, edaravone, and pentoxifylline

    Different Vancomycin Immunoassays Contribute to the Variability in Vancomycin Trough Measurements in Neonates

    Get PDF
    Substantial interassay variability (up to 20%) has been described for vancomycin immunoassays in adults, but the impact of neonatal matrix is difficult to quantify because of blood volume constraints in neonates. However, we provide circumstantial evidence for a similar extent of variability. Using the same vancomycin dosing regimens and confirming similarity in clinical characteristics, vancomycin trough concentrations measured by PETINIA (2011-2012, n = 400) were 20% lower and the mean difference was 1.93 mg/L compared to COBAS (2012-2014, n = 352) measurements. The impact of vancomycin immunoassays in neonatal matrix was hereby suggested, supporting a switch to more advanced techniques (LC-MS/MS)

    Quality of liquid goat whey affected by heat treatment of milk and coagulation type: case study of the Serbian market

    Get PDF
    Two groups of market samples were collected: four samples of whey produced in small scale facilities, and four samples produced in large scale dairy factories. The additional two groups: acid (a) and sweet whey(s) were collected in laboratory from cheeses produced from differently heated goat milk (A—65°C/30 min, B—80°C/5 min and C—90°C/5 min). Gross composition (dry matter content, fat content, protein content), pH, protein, mineral composition and microbial counts were determined. Obtained results for laboratory and market whey samples were analyzed by two-way and one-way ANOVA, respectively. Visualization of quantitative relationships within market and laboratory whey samples has been done by principal component analysis (PCA). Comparison of the protein composition of market samples with those from the laboratory suggested that the majority of goat whey from the market originated from milk heated between 65 and 80°C. While heat treatment of milk affected protein composition, coagulation type determined mineral composition of whey. The amount of Ca content was almost four times higher, while the amount of Zn is more than 15 times higher in acid than in sweet goat whey. The lack of influence of heat treatment on the Ca and Mg content in whey has been detected. Such behavior is the opposite of cow milk behavior, in which with the subsequent increase in heating temperature, the amount of soluble Ca and Mg decreases. For all analyzed samples, dry matter content was in agreement with the legally required minimum level (5.5%). Although legal requirements for safety and quality of small scale dairy products are more flexible than that of the large counterparts, there was not a single characteristic that differed significantly between small scale and large scale market goat whey

    Penicillamine prevents damaging redox in vitro interactions of bilirubin and copper

    Get PDF
    Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu2+. However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu2+ to Cu1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu2+ do not form stable complexes. The binding of Cu2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu1+ undergoes spontaneous oxidation by O2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed

    Developmental pharmacology: a moving target

    No full text
    The main characteristic of pediatric and neonatal pharmacotherapy still is the insufficient availability of drugs with confirmed efficacy and safety data in children. Children differ from adults in the physiological, psychological and developmental terms and this subsequently results in differences in anticipated drug potency, efficacy and toxicity. This paper is focused on the most prominent issues of the contemporary developmental pharmacology. Child's age and development can significantly affect drug pharmacokinetics (PK) processes. The dosage of drugs for children must be based on the physiological characteristics, as well as PK parameters of the drug obtained from the clinical trials with children. While knowledge about the impact of developmental changes on drug PK is increasing, information regarding pharmacodynamics (PD) is still more limited. The examples from clinical and animal data on ontogeny of receptors resulted in strong evidence for changes in drug response during development, in addition to but independent from PK alterations. In order to improve the use of medicines in children, it is essentially to know the complex processes of growth and development into the pediatric drug development programs. This is because absence of PK/PD data leads to increased risk of over- or under-dosing, adverse reactions or inefficiency.publisher: Elsevier articletitle: Developmental pharmacology: A moving target journaltitle: International Journal of Pharmaceutics articlelink: http://dx.doi.org/10.1016/j.ijpharm.2015.05.012 content_type: article copyright: Copyright © 2015 Elsevier B.V. All rights reserved.status: publishe

    Impact of Antibiotic Consumption on Antimicrobial Resistance to Invasive Hospital Pathogens

    No full text
    The aim of our investigation is to correlate the wholesale data on antibiotic consumption expressed in daily doses per 1000 inhabitants per day (DID) with the resistance rate of invasive pathogen bacteria from 2017 to 2021. The data on antimicrobial resistance were collected from an analysis of the primary isolates of hospitalized patients. According to the CAESAR manual, the selected pathogens isolated from blood culture and cerebrospinal fluids were tested. The consumption of antibiotics for systematic use showed a statistically significant increasing trend (β = 0.982, p = 0.003) from 21.3 DID in 2017 to 34.5 DID in 2021. The ratio of the utilization of broad-spectrum to narrow-spectrum antibiotics increased by 16% (β = 0.530, p = 0.358). The most consumed antibiotic in 2021 was azithromycin (15% of total consumption), followed by levofloxacin (13%) and cefixime (12%). A statistically positive significant correlation was discovered between the percentage of resistant isolates of K. pneumoniae and consumption of meropenem (r = 0.950; p = 0.013), ertapenem (r = 0.929; p = 0.022), ceftriaxone (r = 0.924; p = 0.025) and levofloxacin (r = 0.983; p = 0.003). Additionally, the percentage of resistant isolates of E. coli and consumption of ertapenem showed significant correlation (r = 0.955; p = 0.011). Significant correlation with consumption of the antibiotics widely used at the community level, such as levofloxacin, and resistance isolated in hospitals indicates that hospital stewardship is unlikely to be effective without a reduction in antibiotic misuse at the community level

    Mitochondria-Targeted Antioxidants: Future Perspectives in Kidney Ischemia Reperfusion Injury

    No full text
    Kidney ischemia/reperfusion injury emerges in various clinical settings as a great problem complicating the course and outcome. Ischemia/reperfusion injury is still an unsolved puzzle with a great diversity of investigational approaches, putting the focus on oxidative stress and mitochondria. Mitochondria are both sources and targets of ROS. They participate in initiation and progression of kidney ischemia/reperfusion injury linking oxidative stress, inflammation, and cell death. The dependence of kidney proximal tubule cells on oxidative mitochondrial metabolism makes them particularly prone to harmful effects of mitochondrial damage. The administration of antioxidants has been used as a way to prevent and treat kidney ischemia/reperfusion injury for a long time. Recently a new method based on mitochondria-targeted antioxidants has become the focus of interest. Here we review the current status of results achieved in numerous studies investigating these novel compounds in ischemia/reperfusion injury which specifically target mitochondria such as MitoQ, Szeto-Schiller (SS) peptides (Bendavia), SkQ1 and SkQR1, and superoxide dismutase mimics. Based on the favorable results obtained in the studies that have examined myocardial ischemia/reperfusion injury, ongoing clinical trials investigate the efficacy of some novel therapeutics in preventing myocardial infarct. This also implies future strategies in preventing kidney ischemia/reperfusion injury

    Developmental Pharmacology and Therapeutics in Neonatal Medicine

    No full text
    Knowledge about the safe and effective use of medicines in neonates has increased substantially but resulted in few label changes. Despite the extent of these drug exposures, newborns remain the last therapeutic orphans. Drugs, initially developed for use in adults, are reshaped and tailored to specific neonatal indications. However, neonatal pharmacotherapy not only mirrors adult pharmacotherapy but should be driven by their own specific needs. This is because both pharmacokinetics (absorption, distribution, metabolism, elimination, concentration-time) and pharmacodynamics (concentration-effect) display extensive maturation in early infancy, reflecting maturational physiology. We describe and illustrate the relevance of these maturational changes. We subsequently focus on specific aspects related to therapeutic drug monitoring, the need for population tailored neonatal formulations (including dose flexibility and excipients), and the difficulties related to the recognition of adverse drug reactions in neonates (how to recognize a signal in the noise).status: publishe

    Antioxidative system in the erythrocytes of preterm neonates with sepsis: the effects of vitamin E supplementation

    No full text
    Background: Vitamin E is routinely supplemented to preterm babies, including those with neonatal sepsis. Our aim was to examine the effects of neonatal sepsis and vitamin E on antioxidative system (AOS) in the blood. Methods: A prospective, randomized, open label study involved 65 preterm neonates (control/sepsis - 34/31), which were divided into two subgroups - non-supplemented and supplemented with vitamin E (25 IU/day for 60 days). The activities of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined in erythrocytes at days 0, 30, and 60, following sepsis diagnosis. Results: There was no difference in the activity of AOS between controls and neonates with ongoing sepsis. At 60 days, septic neonates showed higher CAT activity compared to controls (P = 0.027), and lower GPx activity compared to 0 days (P = 0.022). The later was mitigated by vitamin E, which on the other hand provoked lower GPx activity at 30 days, compared to untreated septic neonates (P = 0.014). In addition, vitamin E suppressed GR activity in septic neonates (P = 0.025 and P = 0.017 at 30 and 60 days). Finally, vitamin E supplementation in control neonates provoked a significant increase of GPx activity (P = 0.015 at 60 days). Conclusions: The absence of altered redox settings in the blood of neonates during sepsis episode, and vitamin E-provoked decrease in the activity of some components of AOS, suggest that the supplementation of vitamin E in these patients might not be rational
    corecore