1,257 research outputs found

    Carrier Transport in High Mobility InAs Nanowire Junctionless Transistors

    Full text link
    Ability to understand and model the performance limits of nanowire transistors is the key to design of next generation devices. Here, we report studies on high-mobility junction-less gate-all-around nanowire field effect transistor with carrier mobility reaching 2000 cm2/V.s at room temperature. Temperature-dependent transport measurements reveal activated transport at low temperatures due to surface donors, while at room temperature the transport shows a diffusive behavior. From the conductivity data, the extracted value of sound velocity in InAs nanowires is found to be an order less than the bulk. This low sound velocity is attributed to the extended crystal defects that ubiquitously appear in these nanowires. Analyzing the temperature-dependent mobility data, we identify the key scattering mechanisms limiting the carrier transport in these nanowires. Finally, using these scattering models, we perform drift-diffusion based transport simulations of a nanowire field-effect transistor and compare the device performances with experimental measurements. Our device modeling provides insight into performance limits of InAs nanowire transistors and can be used as a predictive methodology for nanowire-based integrated circuits.Comment: 22 pages, 5 Figures, Nano Letter

    Nonlinear Aerodynamic Damping of Sharp-Edged Beams at Low Keulegan-Carpenter Numbers

    Get PDF
    Slender sharp-edged flexible beams such as flapping wings of micro air vehicles (MAVs), piezoelectric fans and insect wings typically oscillate at moderate-to-high values of non-dimensional frequency parameter β with amplitudes as large as their widths resulting in Keulegan–Carpenter (KC) numbers of order one. Their oscillations give rise to aerodynamic damping forces which vary nonlinearly with the oscillation amplitude and frequency; in contrast, at infinitesimal KC numbers the fluid damping coefficient is independent of the oscillation amplitude. In this article, we present experimental results to demonstrate the phenomenon of nonlinear aerodynamic damping in slender sharp-edged beams oscillating in surrounding fluid with amplitudes comparable to their widths. Furthermore, we develop a general theory to predict the amplitude and frequency dependence of aerodynamic damping of these beams by coupling the structural motions to an inviscid incompressible fluid. The fluid–structure interaction model developed here accounts for separation of flow and vortex shedding at sharp edges of the beam, and studies vortex-shedding-induced aerodynamic damping in slender sharp-edged beams for different values of the KC number and the frequency parameter β. The predictions of the theoretical model agree well with the experimental results obtained after performing experiments with piezoelectric fans under vacuum and ambient conditions

    VUV PROPERTIES OF Eu3+- DOPED YBO3 PHOSPHOR PREPARED VIA ALDO-KETO AND SOLID-STATE PROCESS

    Get PDF
    The Eu3+ doped YBO3 was prepared by the novel aldo-keto method. The structure and VUV luminescence properties of the title compound were studied and compared to the corresponding properties of the materials prepared by a conventional solid state reaction. The use of novel aldo-keto method in preparation lowered the reaction threshold temperature by c.a. 300oC. The YBO3 phosphor from the aldo-keto method look like evenly sized spherical structures, whereas those from the solid-state process look like some agglomerates of little spheres. The Eu3+-doped YBO3 phosphors prepared by both methods showed the red emission with peak around 592, 611 and 627 nm at excitations wavelengths 147 and172 nm, which corresponds to the transitions from the excited 5D0 level to the 7FJ (J = 1, 2, 3, 4) levels of Eu3+ activators. However, the emission intensity of the Eu3+ doped YBO3 from the aldo-keto system is about 2 times as much as that from the sold-state process

    A Study on Mortality Profile among Fifty Plus-(50+-) Population (FPP) of India: A 5-Year Retrospective Study at New Delhi District

    Get PDF
    Objectives. To find out the mortality profile vis-a-vis different epidemiological factors at the time of autopsy among the 50+-Population. Material and Method. A five-year retrospective evaluation of medicolegal records between 2006 and 2010 was done at Lady Hardinge Medical College, New Delhi. Results. A total of 493 (17.78%) cases belonged to 50+-Population age group out of total 2773 autopsies performed. The proportion of unidentified/unknown persons among this age group was 36.51%. The unnatural and natural causes constituted 44.62% and 55.38% cases, respectively. The unspecified pneumonitis (50.18%) was reported as the commonest cause followed by coronary artery disease and respiratory tuberculosis among natural ones and the transport accident (57.27%) followed by accidental and intentional self-poisoning and exposure to noxious substances and falls among the unnatural ones. Conclusion. The findings reveal that this age group most commonly dies of natural causes rather than the unnatural ones even in autopsy cases. They have definite cure with timely interventions. The study also points out the need to devise the road and home safety measures to reduce mortality among the study population

    Multiomics approach unravels fertility transition in a pigeonpea line for a two‐line hybrid system

    Get PDF
    Pigeonpea [Cajanus cajan (L.) Millsp.] is a pulse crop cultivated in the semi-arid regions of Asia and Africa. It is a rich source of protein and capable of alleviating malnutrition, improving soil health and the livelihoods of small-holder farmers. Hybrid breeding has provided remarkable improvements for pigeonpea productivity, but owing to a tedious and costly seed production system, an alternative two-line hybrid technology is being explored. In this regard, an environmentsensitive male sterile line has been characterized as a thermosensitive male sterile line in pigeonpea precisely responding to day temperature. The male sterile and fertile anthers from five developmental stages were studied by integrating transcriptomics, proteomics and metabolomics supported by precise phenotyping and scanning electron microscopic study. Spatio-temporal analysis of anther\ud transcriptome and proteome revealed 17 repressed DEGs/DEPs in sterile anthers that play a critical role in normal cell wall morphogenesis and tapetal cell development. The male fertility to sterility transitionwasmainly due to a perturbation in auxin homeostasis, leading to impaired cellwallmodification and sugar transport. Limited nutrient utilization thus leads to microspore starvation in response to moderately elevated day temperature which could be restored with auxin-treatment in the male sterile line. Our findings outline a molecular mechanism that underpins fertility transition responses thereby providing a process-oriented two-line hybrid breeding framework for pigeonpea

    A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea

    Get PDF
    High experimental validation/genotyping success rate (94–96%) and intra-specific polymorphic potential (82–96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8–25.8% with LOD: 7.0–13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1–171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea
    corecore