4,252 research outputs found
Competition between Spiral-Defect Chaos and Rolls in Rayleigh-Benard Convection
We present experimental results for pattern formation in Rayleigh-Benard
convection of a fluid with a Prandtl number, Pr~ 4. We find that the
spiral-defect-chaos (SDC) attractor which exists for Pr~1 has become unstable.
Gradually increasing the temperature difference from below to well above its
critical value no longer leads to SDC. A sudden jump of temperature difference
from below to above onset causes convection to grow from thermal fluctuations
and does yield SDC. However, the SDC is a transient; it coarsens and forms a
single cell-filling spiral which then drifts toward the cell wall and
disappears.Comment: 9 pages(RevTeX), 5 jpg figures, To appear as Rapid Communication in
PR
Engendering Agency: The Differentiated Impact of Educational Initiatives in Zambia and India
Efforts to interrupt the reproduction of unequal gender relations in schools involve alternative practices and pedagogies intended to transform students’ notions of gender and gender relations. Beyond the protective environments where such educational initiatives take shape, however, students must rely on their own sense of agency to reenact newly developed gender roles, behaviors, and understandings. This article examines how human agency is differentially experienced and acted upon by boy and girl students responding to educational nongovernmental initiatives in Zambia and India. Two case studies are reviewed, offering evidence from participants in educational programs that seek to deliberately disrupt gender inequality, revealing distinct ways in which boys and girls respond to such efforts. It is argued that structural inequalities tend to privilege boys and enable them to experience more “transformative agency” and efficacy when asserting new understandings of gender and gender relations
Monte-Carlo simulation of localization dynamics of excitons in ZnO and CdZnO quantum well structures
Localization dynamics of excitons was studied for ZnO/MgZnO and CdZnO/MgZnO
quantum wells (QW). The experimental photoluminescence (PL) and absorption data
were compared with the results of Monte Carlo simulation in which the excitonic
hopping was modeled. The temperature-dependent PL linewidth and Stokes shift
were found to be in a qualitatively reasonable agreement with the hopping
model, with accounting for an additional inhomogeneous broadening for the case
of linewidth. The density of localized states used in the simulation for the
CdZnO QW was consistent with the absorption spectrum taken at 5 K.Comment: 4 figures, to appear in J. Appl. Phy
Higher Frequency Network Activity Flow Predicts Lower Frequency Node Activity in Intrinsic Low-Frequency BOLD Fluctuations
The brain remains electrically and metabolically active during resting conditions. The low-frequency oscillations (LFO) of the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI) coherent across distributed brain regions are known to exhibit features of this activity. However, these intrinsic oscillations may undergo dynamic changes in time scales of seconds to minutes during resting conditions. Here, using wavelet-transform based timefrequency analysis techniques, we investigated the dynamic nature of default-mode networks from intrinsic BOLD signals recorded from participants maintaining visual fixation during resting conditions. We focused on the default-mode network consisting of the posterior cingulate cortex (PCC), the medial prefrontal cortex (mPFC), left middle temporal cortex (LMTC) and left angular gyrus (LAG). The analysis of the spectral power and causal flow patterns revealed that the intrinsic LFO undergo significant dynamic changes over time. Dividing the frequency interval 0 to 0.25 Hz of LFO into four intervals slow- 5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz), we further observed significant positive linear relationships of slow-4 in-out flow of network activity with slow-5 node activity, and slow-3 in-out flow of network activity with slow-4 node activity. The network activity associated with respiratory related frequency (slow- 2) was found to have no relationship with the node activity in any of the frequency intervals. We found that the net causal flow towards a node in slow-3 band was correlated with the number of fibers, obtained from diffusion tensor imaging (DTI) data, from the other nodes connecting to that node. These findings imply that so-called resting state is not ‘entirely’ at rest, the higher frequency network activity flow can predict the lower frequency node activity, and the network activity flow can reflect underlying structural connectivity
Quantitative Analysis of Alcohol, Sugar, and Tartaric Acid in Alcoholic Beverages Using Attenuated Total Reflectance Spectroscopy
Mid-infrared (MIR) spectroscopy in attenuated total reflectance (ATR) mode was used for quantifying ethanol, sucrose, and tartaric acid in alcoholic beverages. One hundred synthetic samples were prepared with different ethanol, sucrose, and tartaric acid concentrations. Experiments were carried out on Bio-Rad 175 C FTS using an ATR accessory. Spectra were recorded in the wavelength region 600–4000
cm
−1
. Calibration was performed using partial least squares (PLS) algorithm. Commercially available alcoholic beverages (gin, rum, vodka, etc.) were experimented and concentration of ethanol in these samples was predicted using the developed calibration model. Chemical analysis of these commercial samples was carried out in order to compare the results. The agreement between ATR results with those of chemical analysis revealed good reliability and repeatability of the technique used
Carrier Transport in High Mobility InAs Nanowire Junctionless Transistors
Ability to understand and model the performance limits of nanowire
transistors is the key to design of next generation devices. Here, we report
studies on high-mobility junction-less gate-all-around nanowire field effect
transistor with carrier mobility reaching 2000 cm2/V.s at room temperature.
Temperature-dependent transport measurements reveal activated transport at low
temperatures due to surface donors, while at room temperature the transport
shows a diffusive behavior. From the conductivity data, the extracted value of
sound velocity in InAs nanowires is found to be an order less than the bulk.
This low sound velocity is attributed to the extended crystal defects that
ubiquitously appear in these nanowires. Analyzing the temperature-dependent
mobility data, we identify the key scattering mechanisms limiting the carrier
transport in these nanowires. Finally, using these scattering models, we
perform drift-diffusion based transport simulations of a nanowire field-effect
transistor and compare the device performances with experimental measurements.
Our device modeling provides insight into performance limits of InAs nanowire
transistors and can be used as a predictive methodology for nanowire-based
integrated circuits.Comment: 22 pages, 5 Figures, Nano Letter
- …