81 research outputs found

    SOS: A tool to support assessment practice across degree courses

    Get PDF
    Reviews of degree programs often reveal a lack of a suitable structure to ensure the appropriate distribution and weighting of students’ assessment experiences across the program. In an attempt to address this issue, the Subject Overview Spreadsheet (SOS) was developed to support staff in designing their assessments and monitoring practice across each year of a degree program. The tool is designed to be used initially by subject coordinators designing their modules, to ensure that all assessment aligns with learning objectives and meets faculty and university policies. SOS then collates information for related sets of subjects – for example, all first-year core subjects within a degree program or all compulsory subjects within a major – and produces a series of tables so that teaching teams across subjects can view the types, weightings and distributions of the assessments. These tables can be used to identify gaps or overloading in the subject assessment design, so that modifications can be made to provide a suitable balance for students. This process has proven very effective with large programs with multiple majors. Data is then forwarded to the accreditation committee to monitor assessment and assurance of learning across the program. It also facilitates reviews of the impact of any proposed changes in subject assessment design

    Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth

    Get PDF
    The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multi-modal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared to term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.Keywords: feature similarity gradients, neonatal brain, preterm birth, MRI, neonatal corte

    Evaluating the Multifarious Motives for Acquiring Goods and Services from the Informal Sector in Central and Eastern Europe

    Get PDF
    The aim of this paper is to evaluate which consumers in Central and Eastern Europe are more likely to acquire goods and services from the informal economy and to unravel their multifarious motives for doing so. Analysing 11,131 face-to-face interviews conducted in 11 Central and Eastern European countries in 2013, a logit regression analysis reveals that some groups purchase from the informal economy to obtain a lower price, others for social or redistributive rationales, and yet others due to the failures of the formal economy in terms of the availability, speed and quality of provision. The implications for theorising and tackling the informal economy are then explored

    Mesenchymal Stem Cells Exhibit Firm Adhesion, Crawling, Spreading and Transmigration across Aortic Endothelial Cells: Effects of Chemokines and Shear

    Get PDF
    Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis

    Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset?

    Get PDF
    White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process
    corecore