21 research outputs found

    Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process

    Get PDF
    A sulfur cycle-based bioprocess for co-treatment of wet flue gas desulfurization (WFGD) wastes with freshwater sewage has been developed. In this process the removal of organic carbon is mainly associated with biological sulfate or sulfite reduction. Thiosulfate is a major intermediate during biological sulfate/sulfite reduction, and its reduction to sulfide is the rate-limiting step. In this study, the impacts of saline sulfite (the ionized form: HSO + SO ) and free sulfurous acid (FSA, the unionized form: HSO) sourced from WGFD wastes on the biological thiosulfate reduction (BTR) activities were thoroughly investigated. The BTR activity and sulfate/sulfite-reducing bacteria (SRB) populations in the thiosulfate-reducing up-flow anaerobic sludge bed (UASB) reactor decreased when the FSA was added to the UASB influent. Batch experiment results confirmed that FSA, instead of saline sulfite, was the true inhibitor of BTR. And BTR activities dropped by 50% as the FSA concentrations were increased from 8.0 × 10to 2.0 × 10mg HSO-S/L. From an engineering perspective, the findings of this study provide some hints on how to ensure effective thiosulfate accumulation in biological sulfate/sulfite reduction for the subsequent denitrification/denitritation. Such manipulation would result in higher nitrogen removal rates in this co-treatment process of WFGD wastes with municipal sewage

    Comparison of proteomic landscape of extracellular vesicles in pleural effusions isolated by three strategies

    Get PDF
    Extracellular vesicles (EVs) derived from pleural effusion (PE) is emerging as disease biomarkers. However, the methods for isolation of EVs from PE (pEVs) were rarely studied. In our study, three methods for isolating pEVs of lung cancer patients were compared, including ultracentrifugation (UC), a combination of UC and size exclusion chromatography (UC-SEC) and a combination of UC and density gradient ultracentrifugation (UC-DGU). The subpopulation of pEVs was identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Western blotting (WB) and nano-flow cytometry (nFCM). Additionally, the proteomic landscape of pEVs was analyzed by Label-free proteomics. The results showed that, compared with UC and UC-DGU, the UC-SEC method separated pEVs with the highest purity. In the proteomic analysis, on average, 1595 proteins were identified in the pEVs isolated by UC-SEC, much more than pEVs isolated by UC (1222) or UC-DGU (807). Furthermore, approximately 90% of identified proteins in each method were found in the EVs public database ExoCarta. Consistent with this, GO annotation indicated that the core proteins identified in each method were mainly enriched in “extracellular exosome.” Many of the top 100 proteins with high expression in each method were suggested as protein markers to validate the presence of EVs in the MISEV2018 guidelines. In addition, combined with lung tissue-specific proteins and vesicular membrane proteins, we screened out and validated several novel protein markers (CD11C, HLA DPA1 and HLA DRB1), which were enriched in pEVs rather than in plasma EVs. In conclusion, our study shows that the method of UC-SEC could significantly improve the purity of EVs and the performance of mass spectrometry-based proteomic profiling in analyzing pEVs. The exosomal proteins CD11C, HLA DPA1 and HLA DRB1 may act as potential markers of pEVs. The proteomic analysis of pEVs provides important information and new ideas for studying diseases complicated with PE

    Safety and Efficacy of Low-Dose Tirofiban Combined With Intravenous Thrombolysis and Mechanical Thrombectomy in Acute Ischemic Stroke: A Matched-Control Analysis From a Nationwide Registry

    Get PDF
    Purpose: Tirofiban administration to acute ischemic stroke patients undergoing mechanical thrombectomy with preceding intravenous thrombolysis remains controversial. The aim of the current study was to evaluate the safety and efficacy of low-dose tirofiban during mechanical thrombectomy in patients with preceding intravenous thrombolysis.Methods: Patients with acute ischemic stroke undergoing mechanical thrombectomy and preceding intravenous thrombolysis were derived from “ANGEL-ACT,” a multicenter, prospective registry study. The patients were dichotomized into tirofiban and non-tirofiban groups based on whether tirofiban was administered. Propensity score matching was used to minimize case bias. The primary safety endpoint was symptomatic intracerebral hemorrhage (sICH), defined as an intracerebral hemorrhage (ICH) associated with clinical deterioration as determined by the Heidelberg Bleeding Classification. All ICHs and hemorrhage types were recorded. Clinical outcomes included successful recanalization, dramatic clinical improvement, functional independence, and mortality at the 3-month follow-up timepoint. Successful recanalization was defined as a modified Thrombolysis in Cerebral Ischemia score of 2b or 3. Dramatic clinical improvement at 24 h was defined as a reduction in NIH stroke score of ≥10 points compared with admission, or a score ≤1. Functional independence was defined as a Modified Rankin Scale (mRS) score of 0–2 at 3-months.Results: The study included 201 patients, 81 in the tirofiban group and 120 in the non-tirofiban group, and each group included 68 patients after propensity score matching. Of the 201 patients, 52 (25.9%) suffered ICH, 15 (7.5%) suffered sICH, and 18 (9.0%) died within 3-months. The median mRS was 3 (0–4), 99 (49.3%) achieved functional independence. There were no statistically significant differences in safety outcomes, efficacy outcomes on successful recanalization, dramatic clinical improvement, or 3-month mRS between the tirofiban and non-tirofiban groups (all p > 0.05). Similar results were obtained after propensity score matching.Conclusion: In acute ischemic stroke patients who underwent mechanical thrombectomy and preceding intravenous thrombolysis, low-dose tirofiban was not associated with increased risk of sICH or ICH. Further randomized clinical trials are needed to confirm the effects of tirofiban in patients undergoing bridging therapy

    Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis

    Get PDF
    Background/Aims Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes. Methods High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ~0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict). Results We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs. Conclusions The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered.Institute of Bioengineering and Nanotechnology (Singapore)Singapore. Biomedical Research CouncilSingapore. Agency for Science, Technology and ResearchSingapore-MIT Alliance for Research and Technology Center (C-185-000-033-531)Janssen Cilag (R-185-000-182-592)Singapore-MIT Alliance Computational and Systems Biology Flagship Project (C-382-641-001-091)Mechanobiology Institute, Singapore (R-714-001-003-271

    Mask-Wearing and Handwashing Behaviors of Chinese Rural Residents during the Pandemic of COVID-19: A Cross-Sectional Survey

    No full text
    Objective: To understand mask-wearing and handwashing behaviors of Chinese rural residents during the COVID-19 pandemic and to analyze the associated factors. Methods: This study used a multi-stage random sampling method to conduct a cross-sectional questionnaire survey during the period of July to December of 2021, in six counties located in Shandong, Shanxi, and Yunnan provinces representing the eastern, central, and western regions of China, respectively. A total of 3864 villagers were surveyed with a questionnaire, and 3832 valid questionnaires were finally analyzed. Descriptive statistics and logistic regression analysis were used for statistical analysis. Results: Around ninety-four percent (93.6%) of rural residents reported mask-wearing during the COVID-19 pandemic, but only 44.5% of them could replace masks in time. Multivariate logistic regression analysis showed that those who were female, aged 15–59, had an education level of high school and above, were divorced/widowed, worked as farmers (workers), or were rural residents in Shandong Province were more likely to wear masks. Furthermore, those who were female, aged 15–59, had an education level of high school and above, were unmarried and married, were business and service workers, or were rural residents in Shandong and Shanxi Province replaced masks more timely. Around seventy percent (69.7%) of rural residents reported using soap when washing their hands, but only 38.0% of rural residents could wash their hands properly. Multivariate logistic regression analysis showed that rural residents who were aged 35–59, had an education of high school and above, or lived in Shandong Province and Shanxi Province were more likely to wash their hands with soap. Those who were aged 15–59, had an education of high school and above, worked as farmers (workers), were employees of governmental departments and retirees, were business and service workers, or were students had higher proper handwashing rates. Conclusion: During the COVID-19 pandemic, the proportion of Chinese rural residents wearing masks reached 93.6%, but only 44.5% were able to replace masks in time, gender, age, education level, marital status, occupation, and living place had an impact on mask-wearing. The proportion of Chinese rural residents who could wash hands with soap reached 69.7%, but only 38.0% could wash their hands properly. Age and education level were influencing factors for both washing-hand with soap and proper handwashing

    ClothGAN: generation of fashionable Dunhuang clothes using generative adversarial networks

    No full text
    Clothing is one of the symbols of human civilisation. Clothing design is an art form that combines practicality and artistry. The Dunhuang clothes culture has a long history which represents ancient Chinese aesthetics. Artificial intelligence (AI) technology has been recently applied to multiple areas, which is also drawing increasing attention in fashion. However, little research has been done on the usage of AI for the creation of clothing, especially in traditional culture. It is challenging that the exploration of computer science and Dunhuang clothing design, which is a cross-history interaction between AI and Chinese classical culture. In this paper, we propose ClothGAN, which is an innovative framework for “designing” new patterns and styles of clothes based on generative adversarial network (GAN) and style transfer algorithm. Besides, we built the Dunhuang clothes dataset and conducted experiments to generate new patterns and styles of clothes with Dunhuang elements. We evaluated these clothing works generated from different models by computing inception score (IS), human prefer score (HPS) and generated score (IS and HPS). The results show that our framework outperformed others in these designing works

    New Horizons of Covalent Complex of Plant-Derived Recombinant Human Lactoferrin (OsrhLF) Combined with Different Polyphenols: Formation, Physicochemical Properties, and Gastrointestinal Fate

    No full text
    Four typical dietary polyphenols ((−)-epigallocatechin gallate (EGCG), quinic acid (QA), caffeic acid (CA), and ferulic acid (FA)) were covalently prepared with rice recombinant human lactoferrin (OsrhLF) and bovine lactoferrin (bLF), and their structure and physicochemical properties were investigated, different lycopene emulsions were made by ultrasonic emulsification to analyze gastrointestinal fate. The results indicated that the covalent modification polyphenols changed the secondary/tertiary structure of LF, significantly improving the surface hydrophilicity, thermal stability, and antioxidant activity of LF. Compared with the bLF group, the OsrhLF group was more hydrophilic and the thermal denaturation temperature of the OsrhLF-CA reached 104.4 °C. LF–polyphenol emulsions significantly enhanced the photochemical stability and bioavailability of lycopene and achieved effective encapsulation and protection of lycopene compared to free lycopene, and the OsrhLF–EGCG reached 58.94% lycopene bioavailability. In short, OsrhLF does not differ much from bLF in terms of physicochemical properties and has a strong potential in the field of dietary supplements
    corecore