56 research outputs found

    The resilience of interdependent transportation networks under targeted attack

    Full text link
    Modern world builds on the resilience of interdependent infrastructures characterized as complex networks. Recently, a framework for analysis of interdependent networks has been developed to explain the mechanism of resilience in interdependent networks. Here we extend this interdependent network model by considering flows in the networks and study the system's resilience under different attack strategies. In our model, nodes may fail due to either overload or loss of interdependency. Under the interaction between these two failure mechanisms, it is shown that interdependent scale-free networks show extreme vulnerability. The resilience of interdependent SF networks is found in our simulation much smaller than single SF network or interdependent SF networks without flows.Comment: 5 pages, 4 figure

    A Tunable Phonon-Exciton Fano System in Bilayer Graphene

    Full text link
    Interference between different possible paths lies at the heart of quantum physics. Such interference between coupled discrete and continuum states of a system can profoundly change its interaction with light as seen in Fano resonance. Here we present a unique many-body Fano system composed of a discrete phonon vibration and continuous electron-hole pair transitions in bilayer graphene. Mediated by the electron-phonon interactions, the excited state is described by new quanta of elementary excitations of hybrid phonon-exciton nature. Infrared absorption of the hybrid states exhibit characteristic Fano lineshapes with parameters renormalized by many-body interactions. Remarkably, the Fano resonance in bilayer graphene is continuously tunable through electrical gating. Further control of the phonon-exciton coupling may be achieved with an optical field exploiting the excited state infrared activity. This tunable phonon-exciton system also offers the intriguing possibility of a 'phonon laser' with stimulated phonon amplification generated by population inversion of band-edge electrons.Comment: 21 pages, 3 figure

    New Advances in Using Virus-like Particles and Related Technologies for Eukaryotic Genome Editing Delivery

    No full text
    The designer nucleases, including Zinc Finger Nuclease (ZFN), Transcription Activator-Like Effector Nuclease (TALEN), and Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated (CRISPR/Cas), have been widely used for mechanistic studies, animal model generation, and gene therapy development. Clinical trials using designer nucleases to treat genetic diseases or cancers are showing promising results. Despite rapid progress, potential off-targets and host immune responses are challenges to be addressed for in vivo uses, especially in clinical applications. Short-term expression of the designer nucleases is necessary to reduce both risks. Currently, delivery methods enabling transient expression of designer nucleases are being pursued. Among these, virus-like particles as delivery vehicles for short-term designer nuclease expression have received much attention. This review will summarize recent developments in using virus-like particles (VLPs) for safe delivery of gene editing effectors to complement our last review on the same topic. First, we introduce some background information on how VLPs can be used for safe and efficient CRISPR/Cas9 delivery. Then, we summarize recently developed virus-like particles as genome editing vehicles. Finally, we discuss applications and future directions

    The role of nitric oxide signaling in food intake; insights from the inner mitochondrial membrane peptidase 2 mutant mice

    Get PDF
    Reactive oxygen species have been implicated in feeding control through involvement in brain lipid sensing, and regulating NPY/AgRP and pro-opiomelanocortin (POMC) neurons, although the underlying mechanisms are unclear. Nitric oxide is a signaling molecule in neurons and it stimulates feeding in many species. Whether reactive oxygen species affect feeding through interaction with nitric oxide is unclear. We previously reported that Immp2l mutation in mice causes excessive mitochondrial superoxide generation, which causes infertility and early signs of aging. In our present study, reduced food intake in mutant mice resulted in significantly reduced body weight and fat composition while energy expenditure remained unchanged. Lysate from mutant brain showed a significant decrease in cGMP levels, suggesting insufficient nitric oxide signaling. Thus, our data suggests that reactive oxygen species may regulate food intake through modulating the bioavailability of nitric oxide

    Sensitive and reliable evaluation of single-cut sgRNAs to restore dystrophin by a GFP-reporter assay.

    No full text
    Most Duchenne muscular dystrophy (DMD) cases are caused by deletions or duplications of one or more exons that disrupt the reading frame of DMD mRNA. Restoring the reading frame allows the production of partially functional dystrophin proteins, and result in less severe symptoms. Antisense oligonucleotide mediated exon skipping has been approved for DMD, but this strategy needs repeated treatment. CRISPR/Cas9 can also restore dystrophin reading frame. Although recent in vivo studies showed the efficacy of the single-cut reframing/exon skipping strategy, methods to find the most efficient single-cut sgRNAs for a specific mutation are lacking. Here we show that the insertion/deletion (INDEL) generating efficiency and the INDEL profiles both contribute to the reading frame restoring efficiency of a single-cut sgRNA, thus assays only examining INDEL frequency are not able to find the best sgRNAs. We therefore developed a GFP-reporter assay to evaluate single-cut reframing efficiency, reporting the combined effects of both aspects. We show that the GFP-reporter assay can reliably predict the performance of sgRNAs in myoblasts. This GFP-reporter assay makes it possible to efficiently and reliably find the most efficient single-cut sgRNA for restoring dystrophin expression

    No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells.

    No full text
    The argonaute protein from the thermophilic bacterium Thermus thermophilus shows DNA-guided DNA interfering activity at high temperatures, complicating its application in mammalian cells. A recent work reported that the argonaute protein from Natronobacterium gregoryi (NgAgo) had DNA-guided genome editing activity in mammalian cells. We compared the genome editing activities of NgAgo and Staphylococcus aureus Cas9 (SaCas9) in human HEK293T cells side by side. EGFP reporter assays and DNA sequencing consistently revealed high genome editing activity from SaCas9. However, these assays did not demonstrate genome editing activity by NgAgo. We confirmed that the conditions allowed simultaneous transfection of the NgAgo expressing plasmid DNA and DNA guides, as well as heterologous expression of NgAgo in the HEK293T cells. Our data show that NgAgo is not a robust genome editing tool, although it may have such activity under other conditions

    Combinatorial Q-Learning for Dou Di Zhu

    No full text
    Deep reinforcement learning (DRL) has gained a lot of attention in recent years, and has been proven to be able to play Atari games and Go at or above human levels. However, those games are assumed to have a small fixed number of actions and could be trained with a simple CNN network. In this paper, we study a special class of Asian popular card games called Dou Di Zhu, in which two adversarial groups of agents must consider numerous card combinations at each time step, leading to huge number of actions. We propose a novel method to handle combinatorial actions, which we call combinatorial Q-learning (CQL). We employ a two-stage network to reduce action space and also leverage order-invariant max-pooling operations to extract relationships between primitive actions. Results show that our method prevails over other baseline learning algorithms like naive Q-learning and A3C. We develop an easy-to-use card game environments and train all agents adversarially from sractch, with only knowledge of game rules and verify that our agents are comparative to humans. Our code to reproduce all reported results is available on github.com/qq456cvb/doudizhu-C

    Cryptosporidium Contamination and Attributed Risks in Yunlong Lake in Xuzhou, China

    No full text
    Swimming in surface water bodies (e.g., lakes, rivers) can expose the human body to substantial risk of infection by Cryptosporidium. These findings are from a one-year investigation on the occurrence and distribution of the protozoan parasite Cryptosporidium in Yunlong Lake, Xuzhou, China. Cryptosporidium oocysts were detected by immunofluorescence microscopy. From January to November of 2015, 180 samples (120 water samples and 60 sediment samples) were collected and analyzed. Among them, 42 (35%) water samples and 28 (47%) sediment samples tested positive for Cryptosporidium. The concentration of Cryptosporidium oocysts in the water samples was 0–8/10 L and 0–260/g in sediment samples. Results revealed that July was the highest risk period for both swimming and diving with an estimated probability of infection from swimming of greater than 18 per 10,000 swim sessions. It was concluded that swimming or diving in Yunlong Lake has a higher risk of Cryptosporidium infection than the acceptable risk level set by the United States Environmental Protection Agency. Thus, regular monitoring of water quality in recreation water bodies is strongly recommended
    • …
    corecore