22 research outputs found

    Biosynthetic bifunctional enzyme complex with high-efficiency luciferin-recycling to enhance the bioluminescence imaging

    Get PDF
    Firefly luciferase is a prominent reporter on molecular imaging with the advantage of longer wavelength on light emission and the ATP linear correlation, which makes it useful in most of current bioluminescence imaging model. However, the utility of this biomaterial was limited by the signal intensity and stability which are respectively affected by enzyme activity and substrate consumption. This study demonstrated a series of novel synthetic bifunctional enzyme complex of Firefly luciferase (Fluc) and Luciferin-regenerating enzyme (LRE). A peptide linker library was constructed for the fusion strategy on biosynthesis. The findings of both experimental data and structural simulation demonstrated that the intervention of fused LRE remarkably improve the stability of in vitro bioluminescence signal through luciferin recycling; and revealed the competitive relationship of Fluc and LRE on luciferin binding: Fluc performed higher activity with one copy number of rigid linker (EAAAK) at the C terminal while LRE acted more efficiently with two copy numbers of flexible linker (GGGGS) at the N terminal. With the advantage of signal intensity and stability, this fused bifunctional enzyme complex may expand the application of firefly luciferase to in vitro bioluminescence imaging

    Shell-model calculation with density-dependent Gogny interaction

    No full text

    Artificially constructed quorum-sensing circuits are used for subtle control of bacterial population density.

    No full text
    Vibrio fischeri is a typical quorum-sensing bacterium for which lux box, luxR, and luxI have been identified as the key elements involved in quorum sensing. To decode the quorum-sensing mechanism, an artificially constructed cell-cell communication system has been built. In brief, the system expresses several programmed cell-death BioBricks and quorum-sensing genes driven by the promoters lux pR and PlacO-1 in Escherichia coli cells. Their transformation and expression was confirmed by gel electrophoresis and sequencing. To evaluate its performance, viable cell numbers at various time periods were investigated. Our results showed that bacteria expressing killer proteins corresponding to ribosome binding site efficiency of 0.07, 0.3, 0.6, or 1.0 successfully sensed each other in a population-dependent manner and communicated with each other to subtly control their population density. This was also validated using a proposed simple mathematical model

    Recent Progress in Gamow Shell Model Calculations of Drip Line Nuclei

    No full text
    The Gamow shell model (GSM) is a powerful method for the description of the exotic properties of drip line nuclei. Internucleon correlations are included via a configuration interaction framework. Continuum coupling is directly included at basis level by using the Berggren basis, in which, bound, resonance, and continuum single-particle states are treated on an equal footing in the complex momentum plane. Two different types of Gamow shell models have been developed: its first embodiment is that of the GSM defined with phenomenological nuclear interactions, whereas the GSM using realistic nuclear interactions, called the realistic Gamow shell model, was introduced later. The present review focuses on the recent applications of the GSM to drip line nuclei

    Quantitative relationship between RBS efficiency of a bacterial population control circuit and steady-state cell density.

    No full text
    <p>Quantitative relationship between RBS efficiency of a bacterial population control circuit and steady-state cell density.</p
    corecore