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ABSTRACT

Firefly luciferase is a prominent reporter on molecular imaging with the
advantage of longer wavelength on light emission and the ATP linear correlation,
which makes it useful in most of current bioluminescence imaging model. However,
the utility of this biomaterial was limited by the signal intensity and stability which
are respectively affected by enzyme activity and substrate consumption.

This study demonstrated a series of novel synthetic bifunctional enzyme
complex of Firefly luciferase (Fluc) and Luciferin-regenerating enzyme (LRE). A
peptide linker library was constructed for the fusion strategy on biosynthesis. The
findings of both experimental data and structural simulation demonstrated that the
intervention of fused LRE remarkably improve the stability of in vitro
bioluminescence signal through luciferin recycling; and revealed the competitive
relationship of Fluc and LRE on luciferin binding: Fluc performed higher activity with
one copy number of rigid linker (EAAAK) at the C terminal while LRE acted more
efficiently with two copy numbers of flexible linker (GGGGS) at the N terminal. With
the advantage of signal intensity and stability, this fused bifunctional enzyme
complex may expand the application of firefly luciferase to in vitro bioluminescence

imaging.
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Firefly luciferase is a prominent reporter on molecular imaging with the
advantage of longer wavelength on light emission and the ATP linear correlation,
which makes it useful in most of current bioluminescence imaging model. However,
the utility of this biomaterial was limited by the signal intensity and stability which
are respectively affected by enzyme activity and substrate consumption.

This study demonstrated a series of novel synthetic bifunctional enzyme
complex of Firefly luciferase (Fluc) and Luciferin-regenerating enzyme (LRE). A
peptide linker library was constructed for the fusion strategy on biosynthesis. The
findings of both experimental data and structural simulation demonstrated that the
intervention of fused LRE remarkably improve the stability of in vitro
bioluminescence signal through luciferin recycling; and revealed the competitive
relationship of Fluc and LRE on luciferin binding: Fluc performed higher activity with
one copy number of rigid linker (EAAAK) at the C terminal while LRE acted more
efficiently with two copy numbers of flexible linker (GGGGS) at the N terminal. With
the advantage of signal intensity and stability, this fused bifunctional enzyme
complex may expand the application of firefly luciferase to in vitro bioluminescence

imaging.

Key words: Bioluminescence imaging, Bifunctional enzyme complex, Firefly

luciferase, Luciferin-recycling, Structural simulation, Peptide linker library.

1. INTRODUCTION
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On molecular imaging, the firefly luciferase (Fluc) was widely studied due to its
ATP linear correlative feature on in vitro detection of ATP in live cell [1,2], therefore
it was used as an indicator for the hygienic index. Meanwhile, the luciferin-
regenerating enzyme (LRE) [3] that catalyzed converting process from oxyluciferin to
luciferin in the presence of D-cysteine [4] was also reported to improve the
luminescence signal generated by exogenous Fluc [5]. However, the application of
Fluc catalyzed bioluminescence imaging was still limited by the bioluminescence
intensity and signal decaying, especially for the in vitro detection of ATP at low
concentration.

Fusion strategy has been widely used in a variety of fields to construct artificial
multifunction proteins [6,7]. Fusion protein can be designed and synthesized to
achieve improved properties or new functionality of multiple proteins by tandem
fusion, domain insertion, or post-translational protein conjugation [8], among
which, , using connection medium such as peptide linker to produce the combination
of two or more protein domainsin order to enhance bioactivities or generate novel
functional complex was studied in recent years, with a wide range of
biotechnological and (bio)pharmaceutical applications [9-11]. The length of linker
and the residues on the structure play an important role in the stability and
functionality of a fusion protein by affecting the active domain and the structure of
protein [6,12].

In our previous work, we reported that the fusion expressed Firefly luciferase

(Fluc) and luciferin-regenerating enzyme (LRE) could enhance the in vivo
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luminescence imaging [13], mediated by two typical types of peptide linker, a rigid
linker (hereinafter referred to as R) with alpha helical structure (sequence of EAAAK)
to maintain distance between domains and a flexible linker (hereinafter referred to
as S, sequence of GGGGS) that increases spatial separation and allows interaction
between domains [14,15].

To study the mediation of peptide linkers on in vitro luminescence imaging and
luciferin-recycling catalyzed by Fluc-LRE fusion complex, and evaluate the efficiency
of designed linkers to separate domains, a peptide linker library containing rigid
linker, flexible linker and mixed linker with different length were assessed in this
study on the model of Fluc and LRE bifunctional enzyme complex, to determine the
optimal structure of bifunctional fusion protein of Fluc and LRE, thus to optimize the

catalytic efficiency on in vitro luminescence imaging.

2. MATERIAL AND METHODS
2.1 Bacteria, plasmids and reagents

The competent cell of E. coli DH5a and E. coli BL21 strain, Isopropyl-p-D-
thiogalactopyranoside (IPTG) and Kanamycin were purchased from Transgen (Beijing,
China). The sequence of Fluc was cloned from the template of pGL4.17 [luc2/Neo]
Vector purchased from Promega (Cat. E672A). The sequence of Lre (GenBank:
AB062786) was synthesised by Sangon Biotech (Shanghai) Co., Ltd. The primers used
for PCR (listed in Fable—ithe appendix) were synthesised by Sangon Biotech
(Shanghai) Co., Ltd. The Takara PrimeSTAR Max DNA Polymerase (Cat. RO45A),

Takara QuickCut restriction enzyme Ndel (Cat. 1621) and Xhol (Cat. 1635), and
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Takara ligation kit (Cat. 6022) were used for the construction of expression clones.
The plasmid pET28a expression vector was from Novagen (Cat. 69864-3). The
plasmid miniprep kit (Cat. GMK5999) and gel extraction kit (Cat. D2500-02) were
purchased from Promega.

2.2 Construction of fusion enzyme complex

The coding sequences A-of a series of fusion proteins with different linker (listed

in Table 1) were respectively constructed using-the-templates-and-primerslisted-in

Table-4framed with the restriction enzyme cutting site of Ndel and Xhol by PCR. The

PCR products were respectively digested by the restriction enzyme Ndel and Xhol,
and subsequently ligated between the multiple cloning sites on the pET28a vector by
Takara ligation kit. The expression clones were respectively driven by T7 promoter,
and the His-tag coding sequence on the plasmid encoded a histidine to the N-
terminal of target protein. The engineered plasmids were transferred in E. coli BL21
for protein expression.
2.3 Bacterial culture

The bacteria was cultured using LB media (containing 10g/L Tryptone, 5g/L
Yeast extract and 10g/L NaCl to pH7.0 at 25 °C) with shaking at 180 rpm at 37 °C, 0.2
mM IPTG was injected to induce the protein expression after 2-hour incubation of
bacterial culture.
2.4 Protein expression, purification and qualification

The bacteria carrying the recombinated enzyme expression clones were
incubated in triplicate with 0.2 mM IPTG induction at 20 °C with shaking. The
overnight cultured bacteria were washed and concentrated 5:1 with PBS (pH 7.0),

performed ultrasonic breaking (3 s X 6 s at 300W for 60 times) on ice and centrifuged
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at 4°C at 10000 rpm for 15 min to harvest the crude extract from supernatant. The
His-tagged enzyme were purified by affinity chromatography (GE AKTA prime plus)
using 5 ml HisTrap™ HP column (GE Healthcare, Sweden). The purified enzyme were
qualified by SDS-PAGE and the concentration of protein were analyzed using the

Bradford assay.

2.5 in vitro assessment on luminescence imaging

The purified enzyme was added in triplicate to the reaction mixture containing
0.25 mM D-luciferin, 4 mM ATP, 10 mM MgSO, and 2.5 mM D-cysteine_in PBS (pH
7.0). The luminescence signal was measured in triplicate at 37 °C by Tecan Infinite
M200 Pro. to analyze the specific activity of each luciferase and fusion protein. The
enzyme activity of Fluc was determined by the relative light unit (RLU) per
microgram of protein while the enzyme activity of LRE was determined by
luminescence changing ratio in the presence/absence of D-cysteine.

The equation which can be used for the determination of changing rate of
luminescence signal to analyze the effect of LRE to the in vitro bioluminescence is

given as:

(RLU" - RLU)

X 100%

Luminescence changing ratio =

Where RLU is the bioluminescence intensity in the presence of €D-cysteine; RLU
is the bioluminescence intensity in the absence of D-cysteine.
2.6 3D Structure simulation

The 3D structure models of enzyme complexes were simulated and predicted
by the I-TASSER server [16], the simulated models with a high confidence score were

analyzed by the software VMD 1.8.3, focusing on the luciferin binding domain | (LBD
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1) and luciferin binding domain Il (LBD II) [5, 17].

2.7 Statistic analysis

One-way ANOVA was applied to compare the effect of different enzyme
complex to the in vivo and in vitro bioluminescence, the data of which were analyzed
by the software GraphPad Prism 6 and P value was used to determine the difference

between each two structures.

3. RESULTS
3.1 Construction of enzyme complex and protein expression

A panel of Fluc expression clones was constructed on the plasmid of pET28a and
induced for expression in E. coli BL21, respectively encoding the enzyme of Fluc, dual
enzyme of Fluc and LRE, and the fusion proteins through different peptide linker. The
serial constructions of Fluc expression clones were listed in Table 21, and were
confirmed by sequencing by Sangon Biotech (Shanghai) Co., Ltd.

The expressed enzyme complexes were purified through affinity
chromatography and the concentration of harvested samples were listed in Table 21.
The samples of extracted enzyme were analyzed by SDS-PAGE. As was shown in Fig 1,
the Fluc at 62 kDa were obtained in lane 2&3, LRE at 38 kDa were obtained in lane 3
and the series of bifunctional enzyme complexes at approximately 100 kDa were
respectively obtained in lane 4-13.

3.2 Effect of peptide linker on Fluc activity

The luminescence intensity of the various of enzyme complex were measured in
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vitro with the existence of the substrates D-luciferin. The luminescence intensity,
which indicated the activity of fusion expressed Fluc on catalyzing light-generation,
were present in Fig 2, compared with the signals produced by the free Fluc and the
dual expression of Fluc-LRE. The initial luminescence intensity demonstrated the
activity of Fluc in different structure with the effects of linkers and residues. Among
the group, the control of Fluc was observed with the strongest initial signal
(1.21x10%° RLU) but sharp decaying tendency, whilst Fluc-R-LRE demonstrated a
signal at 9.66x10? RLU (79.83% of control) with no significant difference (P value was
0.1739 by T-test), which was 22.59% stronger than the free Fluc at the presence of
free LRE (7.88x10? RLU, 65.12% of control, P value was 0.9633 to control and 0.1352
to Fluc-R-LRE). With the effect of peptide linker and the presence of fused LRE, the
other enzyme complex were observed to have a similar tendency but remarkably
lower Fluc activity than that of control, as was shown in the magnified view in Fig 2,
from high to low, respectively at the initial luminescence intensity of 1.15x10°RLU to
Fluc-RSR-LRE (9.50% of control, P value was 0.0274), 6.96x108 RLU to Fluc-SSS-LRE
(5.75% of control, P value was 0.0212), 6.36x108 RLU to Fluc-S-LRE (5.26% of control,
P value was 0.0202), 6.01x108 RLU to Fluc-RR-LRE (4.97% of control, P value was
0.0173), 4.83x10% RLU to Fluc-RS-LRE (3.99% of control, P value was 0.0183),
3.27x108 RLU to Fluc-SR-LRE (2.70% of control, P value was 0.0152), 3.01x108 RLU to
Fluc-RRR-LRE (2.49% of control, P value was 0.0149), 2.40x108 RLU to Fluc-SS-LRE
(1.98% of control, P value was 0.0139) and 1.32x108 RLU to Fluc-SRS-LRE (1.09% of

control, P value was 0.0123). The results indicated that all the enzyme complex
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showed accordant decaying tendency to luminescence signal under the consumption
of the substrate D-luciferin, and the peptide linker and residues on Fluc affected the
Fluc activity in most fusion construction, in which the type of one copy rigid linker
provided the optimal conformation for the activity domain.

3.3 Effect of D-cysteine on in vitro bioluminescence

The substrate of D-cysteine for luciferin-regenerating was added to the purified
Fluc solution to assess its effect on the luminescence. As was shown in Fig 3, the
presence of D-cysteine increased the initial luminescence intensity generated by the
Fluc with 12.40% enhancement, in which there was no LRE existence, though the
signals both decayed and showed no difference (P value was 0.9911) in signal
emission.

3.4 Effect of linker on LRE activity and substrate recycling

The luminescence intensity of the enzyme complexes were measured in vitro in
the presence of both D-luciferin and D-cysteine. The term of Luminescence changing
ratio was used to indicate the activities of LRE and assess the efficiency of luciferin-
recycling in different fusion complex.

As was shown in Fig 4, the changing ratio of Fluc (Panel B) verified the effect of
D-cysteine at the absence of LRE, with this as control, the higher changing ratio
revealed the higher activity of LRE on luciferin-regeneration that caused extra
luminescence signal, while the lower ratio demonstrated low activity of LRE and poor
efficiency in luciferin-recycling. In Panel A, the linear ratio on the complex of Fluc-

SRS-LRE and Fluc-SS-LRE demonstrated significantly higher effect of LRE than other
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complexes, which indicated that 2 copy number of flexible linker enabled the
optimal structure of LRE on luciferin-regenerating. The other complexes in Panel B
were observed with similar tendency to that of control. Among which, the rigid linker
enhanced the activities of fused LRE along with the increasing copy number of rigid
linker, while the flexible linker SSS and S also promoted the LRE activity, which all
performed better than the free LRE and contributed extract signal during the 6-hour
test period. The mixed linker of RS demonstrated less but still positive effect on LRE
activity, while the linker of SR and RSR were observed to inhibit the LRE activity and
thus decreased the luminescence emission from the bifunctional enzyme.

3.5 Structure feature and bioluminescence kinetics of bifunctional enzyme

The structure feature of enzyme complexes were shown in Fig 5, the
luminescence signals indicated the activities of bifunctional enzyme complex whilst
the difference of signals in the presence/absence of D-cysteine indicated the effect
of peptide linker to luciferin-recycling on in vitro bioluminescence.

As for the series of rigid linker in Panel A, the intervention of luciferin-
regeneration did not significantly affect the initial luminescence from each enzyme
complex, but remarkably slow the decaying in signal recession. The luminescence
intensity was varied with the copy number of peptide linker in that the signal
became weaker along with the increasing of rigid linker copy number. In addition,
the enzyme fused with one copy of rigid linker (Fluc-R-LRE) demonstrated the
optimal light emission, which was observed to have lower initial but higher

continuous signal than that of control with no linker mediation.
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As for the series of flexible linker in Panel B, the luciferin-recycling caused
extract signal to increase the luminescence emission, and slow the decaying of signal
recession. The enzyme complex mediated with 3 copies of flexible linker generated
higher initial luminescence while that with one copy of flexible linker provided more
continuous signal after 0.5 h. Remarkably, the enzyme fused through 2 copies of
flexible linker significantly increased the signal emission (P value was 0.0189), though
its signal was the lowest in the group, which indicated the high efficiency of luciferin-
recycling in this type of peptide linker.

With regard to the series of mixed linker in Panel C, the fused enzyme complex
through the peptide linker RSR was observed to decrease of signal generation when
D-cysteine involving LRE catalyzed luciferin-regeneration (P value was 0.5129). The
enzyme complex of Fluc-RS-LRE and Fluc-SR-LRE both presented decreasing of
luminescence at the beginning but the luciferin-regenerating led to an enhancement
of signal emission, which made no difference in the luminescence generation (P
value were respectively 0.9527 and 0.5301). However, the complex of Fluc-SRS-LRE
generated significantly stronger signals when the bifunctional enzyme both worked
(P value <0.0001).

The bioluminescence kinetics of enzyme complex were analyzed as shown in
Table 32. The decaying of bioluminescent signals were nonlinearly growing with the
reaction period, the decay kinetics were satisfactorily fitted with a two-exponential
decay function and consequently described by two rate constants, K1 and K2 as

shown in Table 32. The initial light intensities and half-life of signals also indicated
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the Fluc-R-LRE as optimal structure on light emission while the Fluc-SRS-LRE was the
optimal one on luciferin-regeneration.
3.6 3D structural simulation of enzyme complex

The typical enzyme complexes were structural simulated as shown in Fig 6, and
the predicted results were consistent with the experimental data. The model of Fluc-
R-LRE with an average distance of all residue pairs in two structures (RMSD) at 10.3
+4.6A was observed with open LBD | and LBD Il located in both Fluc and LRE. In the
model of Fluc-RSR-LRE (RMSD at 11.3+ 4.5A), the LBD Il in LRE was distant to the
Fluc domain, which might affect the substrate channeling and thus caused lower LRE
activity. The model of Fluc-SRS-LRE (RMSD at 11.8+ 4.5A) was observed with a
covered LBD I in Fluc that might caused lower Fluc activity, but with wilder open LBD
| and LBD Il in LRE for better luciferin-regenerating.
3.7 Bioluminescent property of optimal enzyme complex in organic solvents

The bioluminescent property of Fluc-R-LRE was assessed respectively in the
solvent of DDT, EDTA, fucose, BSA, Triton X-100 and glycerinum (Fig 7). The results
demonstrated that the initial signal was enhanced in the presence of DDT (peaked at
0.4 mmol/L), EDTA (peaked at 0.4 mmol/L), fucose (peaked at 0.8 mol/L) and BSA
(peaked at 1.0 mg/L) respectively, whilst decreased along with the increasing
concentration of Triton X-100 and glyerinum, which indicated the component of

stabilizing agent for the bifunctional enzyme in further application.

4. DISCUSSION
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LRE was reported to enhance the bioluminescence imaging by regenerating
luciferin for Fluc catalyzing light emission. Many researches such as codon
humanization and mutations [18-20], and the replacement of homogenous diverse
from other firefly species [17, 21-22], had been processed to increase emission
intensity. However, the fast fading of signal catalyzed by free enzyme was still
unsolved (shown as half-life in Table 32).

In this study, a serial fused protein of Fluc and LRE mediated by different type of
peptide linker, were conducted to assess the effect of peptide linker on the enzyme
activities and the bioluminescence imaging. The results of in vitro assessment
demonstrated a relationship of wane and wax between the activity of fused Fluc and
LRE, which indicated the competitive binding of oxyluciferin between Fluc and LRE.
Generally, the increasing unit of rigid linker caused decreasing of Fluc activity
(R>RR>RRR on Fluc activity in Fig 2 and Fig 5) but enhanced the LRE induced luciferin-
recycling (R<RR<RRR on LRE activity in Fig 4). As for the series of flexible linker, Fluc
activity peaked at one unit of flexible linker and was lowest at two units of flexible
linkers (5>SSS>SS in Fig 2 and Fig 5), on the contrary, LRE catalyzed luciferin-
regeneration peaked in Fluc-SS-LRE and bottomed in Fluc-S-LRE (S<SSS<SS in Fig 4).
As for the series of mixed linker, the rigid linker on C terminal of Fluc showed more
effectiveness on Fluc activity than the flexible linker (RSR>RS>SR>SRS in Fig 2), whilst
the LRE activity showed more effectiveness with flexible linker on the N terminal
(SRS>SR>RS>RSR in Fig 4). Among the group, Fluc showed the highest activity in Fluc-

R-LRE, whilst LRE present the most efficiency in luciferin-recycling in Fluc-SRS-LRE.
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The results alse-revealed that the Fluc activity was related to suitable space between
functional domains by rigid linker, whilst the LRE activity was related to appropriate

folding by the flexible linker. This deduction was consistent with the reported

inhibition of firefly luciferase caused by oxyluciferin and dehydroluciferyl adenylate

[23], that the spacer increase benefits the luciferyl adenylate [24] transferring and

the light emission during coenzyme A (CoA) intermediated dehydrogenation into

oxyluciferin [25].

These findings were also verified on the predicted structural models (Fig 6). The
biological functions of the enzyme complex were reflected by the exposure of
substrate-binding sites and the interactions of luciferin-recycling between domains.
The residues in these domains were also concerned in recent years to study the
biological feature on bioluminescence imaging [5, 20].

Unlike the products, such as oxyluciferin and dehydroluciferyl adenylate [26],

and the substrate pyrophosphate and tripolyphosphate [27], as the inhibitor to the

bioluminescence [28], As-the regenerated luciferin supplemented the consumed

substrate for Fluc, therefore the activity of fused LRE and the efficiency of luciferin-
recycling were alse-important fer-to the stability of bioluminescence imaging. The
role of LRE in luciferin-regeneration is still unclear [2329]. As the substrate involved
the LRE catalyzed luciferin-regeneration, D-cysteine was reported to be
characterized as a positive factor to Fluc light-generation in the absence of LRE
[13,2430]. The results in this article also demonstrated that D-cysteine caused an

extra increase of luminescence intensity to the Fluc structure (Fig 3). Besides, the
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optimal enzyme complex, Fluc-R-LRE, perferms-performed better bioluminescence in
the presence of 0.4 mmol/L DDT, 0.4 mmol/L EDTA, 0.8 mol/L fucose and 1.0 mg/L
BSA, and presents negative effect by Triton X-100 and glyerinum (Fig 7).

The ATP in vitro detection was limited by the bioluminescence intensity and
rapid decaying of signal. The intensity of signal refers to precision while the stability
of signal refers to the accuracy of detection. In this study, the bifunctional enzyme
complex with appropriate structure still generated detectable signal after 6 hours.
Meanwhile, the intervention of fused LRE significantly improved the stability of
luminescence and prolonged the half-life of signal, which might advance and expand

the application of Fluc catalyzed bioluminescence imaging.

5. CONCLUSION

In this study, we demonstrated a novel strategy on fusion expression of Fluc
and LRE to improve the bioluminescence imaging using a series of peptide linker. The
effect of peptide linker on the bioluminescence imaging was analyzed according to
the initial luminescence intensity, decaying kinetic of bifunctional enzyme complex,
and the computer simulation of structural feature. The findings revealed the
relationship of wane and wax between the activity of fused Fluc and LRE, which
indicated the competitive binding of oxyluciferin between Fluc and LRE. The Fluc
catalyzed light emission that determined the sensitivity of detection, and the activity
was the highest in the space made by one copy number of rigid linker; whilst the LRE

catalyzed luciferin regeneration that determined the durability of signal, and the
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activity was the most effective with the folding caused by two copy numbers of
flexible linker. The bioluminescent property of the optimal structure of Fluc-R-LRE
was observed with positive effects in DDT, EDTA, fucose and BSA, besides D-cysteine,

and negative effects in Triton X-100 and glyerinum.
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Table 32. Kinetic properties of enzyme complexs depending on enzyme structure.

Enzyme Initial light K1 K2 half-life
structure intensity(RLU) (h'h
Fluc 1.36E+10 1.526+0.056 9.617+0.632 0.14
Fluc-LRE 1.49E+10 3.888+1.106 1.061+0.138 0.37
R 1.06E+10 0.742+0.037 4.357+0.997 0.54
RR 5.99E+08 2.976+0.153 0.661+0.009 0.61
RRR 2.72E+08 0.403+0.016 1.705+0.061 0.64
S 6.66E+08 0.643+0.010 3.057+0.141 0.55
SS 3.21E+08 1.776+0.043 0.300+0.017 0.54
SSS 7.56E+08 2.683+0.114 0.643+0.020 0.44
RS 3.78E+08 0.865+0.015 3.710+0.484 0.61
SR 2.14E+08 4.359+0.532 0.787+0.012 0.64
RSR 9.92E+08 1.096+0.026 6.719+1.173 0.54
SRS 2.04E+08 0.292+0.005 4.803+2.948 2.20
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Fig 2. In vitro luminescence assessment of signal generated by purified enzyme

complex in the absence of D-cysteine.

40 pL of purified enzyme was added to 160 pL reaction mixture containing with 0.25

mM D-luciferin, 2.5mM D-cysteine, 4 mM ATP and 10 mM MgSQ, in microplate. The

luminescence generated by each enzyme complex was measured by Tecan Infinite

M200 Pro. at 37 °C.
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Fig 4. Effect of peptide linker on the in vitro activities of fused LRE and the luciferin-

regeneration

0.25 mM D-luciferin and 2.5 mM D-cysteine were injected simultaneously to the

enzyme mixture and trigger the catalytic reactions by both Fluc and LRE. The

luminescence intensity was measured by Tecan Infinite M200 Pro. at 37 °C.
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Fig 5. In vitro luminescence assessment of signal generated by purified Fluc-LRE

enzyme complex in the presence of D-luciferin and D-cysteine.

40 L of purified enzyme was added to 160 pL reaction mixture containing 0.25 mM

D-luciferin, 2.5mM D-cysteine, 4 mM ATP and 10 mM MgSO, in microplate. The

luminescence intensity was measured by Tecan Infinite M200 Pro. at 37 °C.
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Fig 7. Effect of organic reagents to the bioluminescent property of optimal enzyme
complex

Bioluminescent property of the optimal enzyme complex Fluc-R-LRE in organic
reagents, different concentration of DDT (A), EDTA (B), fucose (C), BSA (D), Triton X-
100 (E) and Glycerinum (F). 180 uL of purified Fluc-R-LRE was added to 20 uL
reaction mixture of organic reagents containing 0.25 mM D-luciferin, 2.5mM D-
cysteine, 4 mM ATP and 10 mM MgSQ, in microplate. The luminescence intensity

was measured by Tecan Infinite M200 Pro. at 37 °C.
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2100
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2105 LRE
2106 GCGGCAAGATCGCCGTGTAATAATACGACTCACTATATAAGGGGAATTGTGAGCGGATAACAATTCCCCTCTA
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CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC

Fluc-FusionP1

GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
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m

Fluc-RRR-FusionP2

Fluc
Fluc-R-FusionP2 CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCCACGGCGATCTTGCCGC
LRE-R-FusionP1 GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc-RR-FusionP2 | CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCTTTAGCAGCAGCTTCCACGGCGATCTTGCCGC
LRE-RR-FusionP1 GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc-
Fluc CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCTTTAGCAGCAGCTTCTTTAGCAGCAGCTTCCACGG

CGATCTTGCCGC

LRE-RRR-FusionP1

GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAATGGGCCCCG
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2194
2195
2196
2197
2198

TAGTTGAAAAGATCG

LRE-P2

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC

Fluc-FusionP1

GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG

Fluc
Fluc-S- Fluc-S-FusionP2 CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCCACGGCGATCTTGCCGC
LRE LRE-S-FusionP1 GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc- Fluc-SS-FusionP2 CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCATAGAACCACCACCACCCACGGCGATCTTGCCGC
SS-LRE LRE-SS-FusionP1 GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc- Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
SSS- Fluc CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCATAGAACCACCACCACCATAGAACCACCACCACC
LRE Fluc-SSS-FusionP2 | CACGGCGATCTTGCCGC
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GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTATGGGCCCCG

Lre | LRE-SSS-FusionP1 | TAGTTGAAAAGATCG
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc- Fluc-RS-FusionP2 | CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCAGAACCACCACCACCCACGGCGATCTTGCCGC
RS-LRE LRE-RS-FusionP1 GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGGTGGTGGTGGTTCTATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc- Fluc-SR-FusionP2 | CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCTTTAGCAGCAGCTTCCACGGCGATCTTGCCGC
SR-LRE LRE-SR-FusionP1 GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTGAAGCTGCTGCTAAAATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc- Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
RSR- Fluc-RSR-FusionP2 | CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCAGAACCACCACCACCTTTAGCAGCAGCTTCCACG
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GCGATCTTGCCGC

GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGGTGGTGGTGGTTCTGAAGCTGCTGCTAAAATGGGCCCCG

Lre | LRE-RSR-FusionP1 | TAGTTGAAAAGATCG
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCTTTAGCAGCAGCTTCAGAACCACCACCACCCACG
Fluc-
Fluc-SRS-FusionP2 | GCGATCTTGCCGC
SRS-
GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAGGTGGTGGTGGTTCTATGGGCCCCG
E
Lre | LRE-SRS-FusionP1 | TAGTTGAAAAGATCG

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
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Table 1. Construction and qualification of enzyme complex.

Fusion abbrevi Amino acid . ] Concentratio
sketch map ] Oligonucleotide sequence
enzyme ation sequence n (ng/ml)

Fluc Fluc / / / 597.26
Fluc-LRE Fluc LRE / / / 594.04
Fluc-R-
LRE Fluc [33] LRE R (EAAAK) GAAGCTGCTGCTAAA 885.75
Fluc-RR- GAAGCTGCTGCTAAAGAAGCTGCT
LRE Fluc LRE RR (EAAAKEAAAK) GCTAAA 580.60
Fluc-RRR- (EAAAKEAAAKE GAAGCTGCTGCTAAAGAAGCTGCT
LRE Fluc [533853 LRE RRR AAAK) GCTAAAGAAGCTGCTGCTAAA 599.31
ilggs' Fluc ] LRE S (GGGGS) GGTGGTGGTGGTTCT 610.30
Fluc-SS- GGTGGTGGTGGTTCTGGTGGTGGT
LRE Fluc N_71 LRE SS (GGGGSGGGGS) - 551.22
Fluc-SSS- (GGGGSGGGGSG GGTGGTGGTGGTTCTGGTGGTGGT

1.81
LRE Flue Ny LRE 555 GGGS) GGTTCTGGTGGTGGTGGTTCT 5818
Fluc-RS- GAAGCTGCTGCTAAAGGTGGTGGT
LRE Fluc [ dJ LRE RS (EAAAKGGGGS) - 648.61
Fluc-SR- GGTGGTGGTGGTTCTGAAGCTGCT
LRE Fluc L 838l LRE SR (GGGGSEAAAK) GCTAAA 577.09
Fluc-RSR- — (EAAAKGGGGSE GAAGCTGCTGCTAAAGGTGGTGGT
LRE Fluc |32 LRE RsR GGTTCTGAAGCTGCTGCTAAA 590.98




Fluc-SRS-
LRE

Fluc

LRE

SRS

(GGGGSEAAAK  GGTGGTGGTGGTTCTGAAGCTGCT

GGGGS)

GCTAAAGGTGGTGGTGGTTCT

959.96




Table 2. Kinetic properties of enzyme complexs depending on enzyme structure.

Enzyme Initial light K1 K2 half-life
structure intensity(RLU) (h'h
Fluc 1.36E+10 1.526+0.056 9.617+0.632 0.14
Fluc-LRE 1.49E+10 3.888+1.106 1.061+0.138 0.37
R 1.06E+10 0.742+0.037 4.357+0.997 0.54
RR 5.99E+08 2.976+0.153 0.661+0.009 0.61
RRR 2.72E+08 0.403+0.016 1.705+0.061 0.64
S 6.66E+08 0.643+0.010 3.057+0.141 0.55
SS 3.21E+08 1.776+0.043 0.300+0.017 0.54
SSS 7.56E+08 2.683+0.114 0.643+0.020 0.44
RS 3.78E+08 0.865+0.015 3.710+0.484 0.61
SR 2.14E+08 4.359+0.532 0.787+0.012 0.64
RSR 9.92E+08 1.096+0.026 6.719+1.173 0.54
SRS 2.04E+08 0.292+0.005 4.803+2.948 2.20




Table 1. Sequences of PCR primers in this study.

Templa
Protein Primers Sequences
te
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc Fluc
Fluc-FusionP2 CCGCTCGAGTTA CACGGCGATCTTGCCGCCCTT
LRE-P1 GGAATTCCATATGGGCCCCGTAGTTGAAAAGATCG
LRE Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc CGATCTTTTCAACTACGGGGCCCATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCG
Fluc- Fluc-LRE-Rev-P2 CTCACAATTCCCCTTATATAGTGAGTCGTATTATTACACGGCGATCTTGCCGC
LRE GCGGCAAGATCGCCGTGTAATAATACGACTCACTATATAAGGGGAATTGTGAGCGGATAACAATTCCCCTCTA

Lre

Fluc-LRE-For-P1

GAAATAATTTTGTTTAACTTTAAGAAGGAGATGGGCCCCGTAGTTGAAAAGATCG

LRE-P2

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC




Fluc-FusionP1

GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG

Fluc
Fluc-R- Fluc-R-FusionP2 CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCCACGGCGATCTTGCCGC
LRE LRE-R-FusionP1 GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc- Fluc-RR-FusionP2 CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCTTTAGCAGCAGCTTCCACGGCGATCTTGCCGC
RR-LRE LRE-RR-FusionP1 GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc- Fluc CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCTTTAGCAGCAGCTTCTTTAGCAGCAGCTTCCACGG
RRR- Fluc-RRR-FusionP2 | CGATCTTGCCGC
LRE GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAATGGGCCCCG

Lre

LRE-RRR-FusionP1

TAGTTGAAAAGATCG




LRE-P2

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC

Fluc-FusionP1

GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG

Fluc
Fluc-S- Fluc-S-FusionP2 CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCCACGGCGATCTTGCCGC
LRE LRE-S-FusionP1 GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc- Fluc-SS-FusionP2 CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCATAGAACCACCACCACCCACGGCGATCTTGCCGC
SS-LRE LRE-SS-FusionP1 GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc-
Fluc CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCATAGAACCACCACCACCATAGAACCACCACCACC
SSS-
Fluc-SSS-FusionP2 | CACGGCGATCTTGCCGC
LRE

Lre

LRE-SSS-FusionP1

GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTATGGGCCCCG




TAGTTGAAAAGATCG

LRE-P2

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC

Fluc-FusionP1

GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG

Fluc
Fluc- Fluc-RS-FusionP2 CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCAGAACCACCACCACCCACGGCGATCTTGCCGC
RS-LRE LRE-RS-FusionP1 GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGGTGGTGGTGGTTCTATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
Fluc
Fluc- Fluc-SR-FusionP2 CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCTTTAGCAGCAGCTTCCACGGCGATCTTGCCGC
SR-LRE LRE-SR-FusionP1 GCGGCAAGATCGCCGTGGGTGGTGGTGGTTCTGAAGCTGCTGCTAAAATGGGCCCCGTAGTTGAAAAGATCG
Lre
LRE-P2 CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC
Fluc- Fluc-FusionP1 GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG
RSR- Fluc CGATCTTTTCAACTACGGGGCCCATTTTAGCAGCAGCTTCAGAACCACCACCACCTTTAGCAGCAGCTTCCACG
LRE Fluc-RSR-FusionP2 | GCGATCTTGCCGC




Lre

LRE-RSR-FusionP1

GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGGTGGTGGTGGTTCTGAAGCTGCTGCTAAAATGGGCCCCG

TAGTTGAAAAGATCG

LRE-P2

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC

Fluc-

SRS-

LRE

Fluc

Fluc-FusionP1

GGAATTCCATATG GAAGATGCCAAAAACATTAAGAAGG

Fluc-SRS-FusionP2

CGATCTTTTCAACTACGGGGCCCATAGAACCACCACCACCTTTAGCAGCAGCTTCAGAACCACCACCACCCACG

GCGATCTTGCCGC

Lre

LRE-SRS-FusionP1

GCGGCAAGATCGCCGTGGAAGCTGCTGCTAAAGAAGCTGCTGCTAAAGGTGGTGGTGGTTCTATGGGCCCCG

TAGTTGAAAAGATCG

LRE-P2

CCGCTCGAGTTACAATTTAACTTTAACACCAGCAAAACCTTTCAC




