38 research outputs found

    Far infrared mapping of three Galactic star forming regions : W3(OH), S 209 & S 187

    Get PDF
    Three Galactic star forming regions associated with W3(OH), S209 and S187 have been simultaneously mapped in two trans-IRAS far infrared (FIR) bands centered at ~ 140 and 200 micron using the TIFR 100 cm balloon borne FIR telescope. These maps show extended FIR emission with structures. The HIRES processed IRAS maps of these regions at 12, 25, 60 & 100 micron have also been presented for comparison. Point-like sources have been extracted from the longest waveband TIFR maps and searched for associations in the other five bands. The diffuse emission from these regions have been quantified, which turns out to be a significant fraction of the total emission. The spatial distribution of cold dust (T < 30 K) for two of these sources (W3(OH) & S209), has been determined reliably from the maps in TIFR bands. The dust temperature and optical depth maps show complex morphology. In general the dust around S209 has been found to be warmer than that in W3(OH) region.Comment: Accepted for publication in Journal of Astrophysics and Astronomy (20 pages including 8 figures & 3 tables

    Large herbivores transform plant-pollinator networks in an African savanna

    Get PDF
    Pollination by animals is a key ecosystem service1,2 and interactions between plants and their pollinators are a model system for studying ecological networks,3,4 yet plant-pollinator networks are typically studied in isolation from the broader ecosystems in which they are embedded. The plants visited by pollinators also interact with other consumer guilds that eat stems, leaves, fruits, or seeds. One such guild, large mammalian herbivores, are well-known ecosystem engineers5, 6, 7 and may have substantial impacts on plant-pollinator networks. Although moderate herbivory can sometimes promote plant diversity,8 potentially benefiting pollinators, large herbivores might alternatively reduce resource availability for pollinators by consuming flowers,9 reducing plant density,10 and promoting somatic regrowth over reproduction.11 The direction and magnitude of such effects may hinge on abiotic context—in particular, rainfall, which modulates the effects of ungulates on vegetation.12 Using a long-term, large-scale experiment replicated across a rainfall gradient in central Kenya, we show that a diverse assemblage of native large herbivores, ranging from 5-kg antelopes to 4,000-kg African elephants, limited resource availability for pollinators by reducing flower abundance and diversity; this in turn resulted in fewer pollinator visits and lower pollinator diversity. Exclusion of large herbivores increased floral-resource abundance and pollinator-assemblage diversity, rendering plant-pollinator networks larger, more functionally redundant, and less vulnerable to pollinator extinction. Our results show that species extrinsic to plant-pollinator interactions can indirectly and strongly alter network structure. Forecasting the effects of environmental change on pollination services and interaction webs more broadly will require accounting for the effects of extrinsic keystone species

    Climate gradients, and patterns of biodiversity and biotic homogenization in urban residential yards

    Get PDF
    Residential yards constitute a substantive biodiverse greenspace within urban areas. This biodiversity results from a combination of native and non-native species and can contribute to biotic homogenization. Geographical climatic patterns affect the distribution of native species and may differently affect non-native species. In this study, we examined biodiversity and biotic homogenization patterns of yard-dwelling land snails across 12 towns in Oklahoma and Kansas (USA). The 3 x 4 array of towns incorporated a N-S winter temperature gradient (mean low January temperature range = -8.4 to 0.1°C) and an E-W annual rainfall gradient (annual rainfall range = 113.8 to 61.3 cm/yr). Ten yards per town were surveyed. We hypothesized that mild winter temperatures and greater annual rainfall would be associated with greater snail abundance and richness, and that the presence of non-native species would contribute to biotic homogenization. Non-native snails were present and often abundant in all towns. Snail communities varied with both rainfall and cold temperature. Contrary to our prediction, snail abundance was inversely related to annual rainfall–likely because drier conditions resulted in greater yard watering that both augmented rainfall and maintained moist conditions. Sørensen similarity between towns for the entire land snail community and for only non-native species both showed distance-decay patterns, with snail composition becoming less similar with increasing distance—patterns resulting from species turnover. The biotic homogenization index also showed a distance-related pattern, such that closer towns were more likely to have biotic homogenization whereas more distant towns tended to have biotic differentiation. These results support the concept that biotic homogenization is more likely regionally and that climatic changes over distance result in species turnover and can reduce spatially broad biotic homogenization.Funding was provided by the University of Oklahoma: SRI funds, Oklahoma Biological Survey small grants program, and University Libraries (all to EAB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Open Access fees paid for in whole or in part by the University of Oklahoma LibrariesYe

    Generic ecological impact assessments of alien species in Norway: a semi-quantitative set of criteria

    Get PDF
    The ecological impact assessment scheme that has been developed to classify alien species in Norway is presented. The underlying set of criteria enables a generic and semi-quantitative impact assessment of alien species. The criteria produce a classification of alien species that is testable, transparent and easily adjustable to novel evidence or environmental change. This gives a high scientific and political legitimacy to the end product and enables an effective prioritization of management efforts, while at the same time paying attention to the precautionary principle. The criteria chosen are applicable to all species regardless of taxonomic position. This makes the assessment scheme comparable to the Red List criteria used to classify threatened species. The impact of alien species is expressed along two independent axes, one measuring invasion potential, the other ecological effects. Using this two-dimensional approach, the categorization captures the ecological impact of alien species, which is the product rather than the sum of spread and effect. Invasion potential is assessed using three criteria, including expected population lifetime and expansion rate. Ecological effects are evaluated using six criteria, including interactions with native species, changes in landscape types, and the potential to transmit genes or parasites. Effects on threatened species or landscape types receive greater weightings

    Organic Matter Chemistry Drives Carbon Dioxide Production of Peatlands

    No full text
    Peatlands play a critical role in the global carbon (C) cycle, encompassing ∼30% of the 1,500 Pg of C stored in soils worldwide. However, this C is vulnerable to climate and land-use change. Ecosystem models predict the impact of perturbation on C fluxes based on soil C pools, yet responses could vary markedly depending on soil organic matter (SOM) chemistry. Here, we show that one SOM functional group responds strongly to environmental factors and predicts the risk of carbon dioxide (CO2) release from peatlands. The molecular composition of SOM in 125 peatlands differed markedly at the global scale due to variation in temperature, land-use, vegetation, and nutrient status. Despite this variation, incubation of peat from a subset of 11 sites revealed that O-alkyl C (i.e., carbohydrates) was the strongest predictor of aerobic CO2 production. This explicit link provides a simple parameter that can improve models of peatland CO2 fluxes

    A global analysis of avian island diversity–area relationships in the Anthropocene

    No full text
    Research on island species–area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity–area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have ‘re-calibrated’ the IDARs such that they resemble the historic period prior to recent extinctions
    corecore