7 research outputs found

    Biomechanical Tolerance of Whole Lumbar Spines in Straightened Posture Subjected to Axial Acceleration

    Get PDF
    Quantification of biomechanical tolerance is necessary for injury prediction and protection of vehicular occupants. This study experimentally quantified lumbar spine axial tolerance during accelerative environments simulating a variety of military and civilian scenarios. Intact human lumbar spines (T12‐L5) were dynamically loaded using a custom‐built drop tower. Twenty‐three specimens were tested at sub‐failure and failure levels consisting of peak axial forces between 2.6 and 7.9 kN and corresponding peak accelerations between 7 and 57 g. Military aircraft ejection and helicopter crashes fall within these high axial acceleration ranges. Testing was stopped following injury detection. Both peak force and acceleration were significant (p \u3c 0.0001) injury predictors. Injury probability curves using parametric survival analysis were created for peak acceleration and peak force. Fifty‐percent probability of injury (95%CI) for force and acceleration were 4.5 (3.9–5.2 kN), and 16 (13–19 g). A majority of injuries affected the L1 spinal level. Peak axial forces and accelerations were greater for specimens that sustained multiple injuries or injuries at L2–L5 spinal levels. In general, force‐based tolerance was consistent with previous shorter‐segment lumbar spine testing (3–5 vertebrae), although studies incorporating isolated vertebral bodies reported higher tolerance attributable to a different injury mechanism involving structural failure of the cortical shell. This study identified novel outcomes with regard to injury patterns, wherein more violent exposures produced more injuries in the caudal lumbar spine. This caudal migration was likely attributable to increased injury tolerance at lower lumbar spinal levels and a faster inertial mass recruitment process for high rate load application. Published 2017. This article is a U.S. Government work and is in the public domain in the USA

    Level- and Region-Specific Properties of Young Human Lumbar Annulus

    Get PDF
    ABSTRACT The objective of this study was to determine the material properties of the human lumbar intervertebral disc annulus as a function of anatomical region and spinal level. Samples from minimally or nondegenerated spines were extracted from young post mortem human subjects and tested in tension. Statistically significant differences were found based on anatomical region. Trends appear to indicate spinal level dependency, although additional samples are required to attain statistical significance. It is possible to use finite element models incorporating these region-and level-specific properties to quantify internal load-sharing and delineate the mechanism of disorders such as herniation

    Regional variations in C1–C2 bone density on quantitated computed tomography and clinical implications

    No full text
    Background: Our elderly population is growing and the number of spine fractures in the elderly is also growing. The elderly population in general may be considered as poor surgical candidates experience a high rate of fractures at C1 and C2 compared with the general population. Nonoperative management of upper cervical fractures is not benign as there is a high nonunion rate for both C1 and C2 fractures in the elderly, and orthosis compliance is often suboptimal, or complicated by skin breakdown. The optimal technique for upper cervical stabilization in the elderly may be different than in younger populations as the bone quality is inferior in the elderly. The objective of this basic science study is to determine whether the bone mineral density (BMD) of C1 and C2 vary by region, and if this is a gender difference in this elderly age group. Methods: Twenty cadaveric spines from 45 to 83 years of age were used to obtain BMD using quantitated computed tomography (QCT). BMD was measured using a QCT. For C1, 8 regions were determined: anterior tubercle, bilateral anterior and medial lateral masses, bilateral posterior arches, and posterior tubercle. For C2, 7 regional BMDs were determined: top of odontoid, base of odontoid-body interface, mid body, bilateral lateral masses, anterior inferior body near the discs space, and the C2 spinous process. Results: The BMD was greatest at the C1 anterior tubercle (564.4±175.8 mg/cm3) and C1 posterior ring (420.8±110.2 mg/cm3), and least at the anterior and medial lateral masses (262.8±59.5 mg/cm3, 316.9±72.6 mg/cm3). At C2 QCT BMD was greatest at the top of the dens (400.6±107.9 mg/cm3) decreasing down through the odontoid-C2 body junction (267.8±103.5 mg/cm3) and least in the mid C2 body 249.1±68.8 mg/cm3). The posterior arch of C1 and the spinous process of C2 had higher BMD's 420.8±110.2 mg/cm3 and 284.1±93.0 mg/cm3, respectively. A high correlation was observed between the BMD at the interface of the dens-vertebral body with the vertebral body with a Pearson correlation coefficient of 0.86. The BMD of the top of dens was significantly higher (p<.05) than all the regions in C2. Conclusions: Regional and segmental BMD variations at C1 and C2 have clinical implications for surgical constructs in the elderly population. Given the higher BMDs of the C1 and C2 spinous process and posterior arches, consideration should be given to incorporate these areas using various C1–C2 wiring techniques. In the elderly, lateral masses particularly at C1 with lower BMD may result in potential screw loosening and nonunion in this age group. Old-school wiring techniques have a track record of efficacy and safety with less blood loss, reduced operative time, reduced X-ray exposure, and should be considered in the elderly as a primary stabilization technique or a belt-over suspenders approach based on regional variations in BMD in the elderly

    Initial analysis of archived non-human primate frontal and rear impact data from the biodynamics data resource

    No full text
    <p><b>Objective</b>: The research objective was to conduct an initial analysis of non-human primate (NHP) data from frontal and rear impact events archived in the Biodynamics Data Resource (BDR) records of the Naval Biodynamics Laboratory (NBDL). These rare data, collected between 1973 and 1989, will inform the safety community of upper-end tolerance limits of NHP and may be related to severe crash scenarios.</p> <p><b>Methods</b>: Data from frontal and rear acceleration tests to 93 macaque NHP were examined. Each NHP was fully torso restrained, whereas the head–neck complex was unrestrained. Each NHP underwent between 1 and 21 total runs; 2 total runs was most common—a low-level run and then a high-level run. Following each impact exposure, the NHP was evaluated using a series of medical examinations. Now part of the legacy collection in the BDR, these evaluations were used to assess NHP exposures to be in one of 3 categories: noninjurious, injurious, or fatal. Using reported peak sled acceleration values, data were amenable to survival analysis statistical methodology to derive injury probability curves (IPCs). IPCs were derived for injury and fatality outcomes.</p> <p><b>Results</b>: Fatal injuries for both frontal and rear impacts were mostly at the cranio-vertebral junction. In addition to hemorrhage, fatal frontal and rear impact tests both produced predominantly atlanto-occipital dislocations, with and without spinal cord transection. After exclusions, IPCs were derived for frontal and rear impact for both (1) fatal outcome and (2) injurious outcome (any injury including fatal injury). For frontal impact, 53 NHP qualified with 5, 25, and 50% risk for fatality at 89, 105, and 114 peak sled <i>G</i>s, respectively, and for injurious outcome at 70, 92, and 106 <i>G</i>s, respectively. For rear impact, 34 NHP qualified with 5, 25, and 50% risk for fatality at 96, 122, 138 peak sled <i>G</i>s, respectively, and for injurious outcome at 75, 99, and 115 <i>G</i>s, respectively.</p> <p><b>Conclusions</b>: The majority of injuries were at the cranio-vertebral junction, indicating that the inertial head mass caused a tensile loading mechanism to the cervical spine. These data may be used in conjunction with finite element modeling to estimate risks to the human population. The most direct application in the automotive environment could be to the well-restrained child. The <i>N<sub>ij</sub></i> neck injury criteria, currently based on data from piglet studies, could also benefit because the NHP is a more accurate human surrogate. These types of tests are likely to never be repeated and will form an upper bound of tolerance information valuable to safety system designers.</p
    corecore