6,580 research outputs found

    Continued Progress: Promising Evidence on Personalized Learning

    Get PDF
    The findings are grouped into four sections. The first section on student achievement finds that there were positive effects on student mathematics and reading performance and that the lowest-performing students made substantial gains relative to their peers. The second section on implementation and the perceptions of stakeholders finds that adoption of personalized learning practices varied considerably. Personalized learning practices that are direct extensions of current practice were more common, but implementation of some of the more challenging personalized learning strategies was less common. The third section relates implementation features to outcomes and identifies three elements of personalized learning that were being implemented in tandem in the schools with the largest achievement effects. Finally, the fourth section compares teachers' and students' survey responses to a national sample and finds some differences, such as teachers' greater use of practices that support competency-based learning and greater use of technology for personalization in the schools in this study with implementation data

    Note: Utilizing Pb(Zr 0.95Ti 0.05)O₃ Ferroelectric Ceramics to Scale Down Autonomous Explosive-Driven Shock-Wave Ferroelectric Generators

    Get PDF
    Further miniaturization of recently designed autonomous ferroelectric generators (FEGs) S. I. Shkuratov, J. Baird, and E. F. Talantsev, Rev. Sci. Instrum. 82, 086107 (2011), which are based on the effect of explosive-shock-wave depolarization of poled ferroelectrics is achieved. The key miniaturization factor was the utilization of high-energy density Pb(Zr0.95Ti0.05)O3 (PZT 955) ferroelectric ceramics as energy-carrying elements of FEGs instead of the previously used Pb(Zr0.52Ti0.48)O3 (PZT 5248). A series of experiments demonstrated that FEGs based on smaller PZT 955 ferroelectric elements are capable of producing the same output voltage as those based on PZT 5248 elements twice as large. It follows from the experimental results that the FEG output voltage is directly proportional to the thickness of PZT 955 samples. A comparison of the operation of FEGs based on PZT 955 and on PZT 5248 ferroelectrics is presented

    The Depolarization of Pb(Zr0.52Ti0.48)O₃ Ferroelectrics by Cylindrical Radially Expanding Shock Waves and Its Utilization for Miniature Pulsed Power

    Get PDF
    The effects of depolarization of Pb(Zr0.52Ti0.48)O3 (PZT 52/48) poled ferroelectrics by cylindrical radially expanding shock waves propagated along and across the polarization vector P0 were experimentally detected. Miniature (total volume 100 cm3) autonomous generators based on these effects were capable of producing output voltage pulses with amplitudes up to 25 kV and output energies exceeding 1 J

    Effect of Shock Front Geometry on Shock Depolarization of Pb(Zr 0.52Ti 0.48)O₃ Ferroelectric Ceramics

    Get PDF
    By use of experimentation, we detected a shock wave geometry effect on the depolarization of poled PbZr0.52Ti0.48)O3 Z(PZT 52/48) ferroelectrics. It follows from the experimental results that shock front geometry is one of key parameters in the shock depolarization of PZT 5248 ferroelectrics. This shock depolarization effect forms a fundamental limit to miniaturization of explosive-driven shock-wave ferroelectric generators (FEGs). Based on obtained experimental results, we developed miniature generators that reliably produce pulsed voltages exceeding 140 kV

    Note: Miniature 120-KV Autonomous Generator Based on Transverse Shock-Wave Depolarization of Pb(Zr0.52Ti0.48)O₃ Ferroelectrics

    Get PDF
    The design of autonomous ultrahigh-voltage generators with no moving metallic parts based on transverse explosive shock wave depolarization of Pb(Zr0.52Ti0.48)O3 (PZT 5248) poled ferroelectrics was explored and studied. It follows from experimental results that the output voltage produced by the shock-wave ferroelectric generators (FEGs) is directly proportional to the number of PZT 5248 elements connected in series. It was demonstrated that miniature FEGs (volume less than 180 cm3) were capable of reliably producing output voltage pulses with amplitudes exceeding 120 kV which is the record reported in open literature

    Electric Breakdown of Longitudinally Shocked Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Ceramics

    Get PDF
    Electric breakdown of longitudinally-shock-compressed Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT 52/48) ferroelectric ceramics was experimentally investigated. It was found that a dependence of breakdown field strength, Eg, of shocked ferroelectrics on the thickness of the element, d, ranging from 0.65 to 6.5 mm is described by the Eg (d) = γ  · d-w law that describes the breakdown of dielectrics at ambient conditions. It follows from the experimental results that the tunnel effect is a dominant mechanism of injection of prime electrons in the shocked ferroelectric elements. It was demonstrated that electric breakdown causes significant energy losses in miniature autonomous generators based on shock depolarization of poled ferroelectric elements

    Electric Field-Free Gas Breakdown in Explosively Driven Generators

    Get PDF
    All known types of gas discharges require an electric field to initiate them. We are reporting on a unique type of gas breakdown in explosively driven generators that does not require an electric field

    Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect

    Full text link
    The plastic deformation of dilute alloys is often accompanied by plastic instabilities due to dynamic strain aging and dislocation interaction. The repeated breakaway of dislocations from and their recapture by solute atoms leads to stress serrations and localized strain in the strain controlled tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present work, we analyse the stress time series data of the observed PLC effect in the constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of strain rates at room temperature. The scaling behaviour of the PLC effect was studied using two complementary scaling analysis methods: the finite variance scaling method and the diffusion entropy analysis. From these analyses we could establish that in the entire span of strain rates, PLC effect showed Levy walk property. Moreover, the multiscale entropy analysis is carried out on the stress time series data observed during the PLC effect to quantify the complexity of the distinct spatiotemporal dynamical regimes. It is shown that for the static type C band, the entropy is very low for all the scales compared to the hopping type B and the propagating type A bands. The results are interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure

    Rotons and Quantum Evaporation from Superfluid 4He

    Full text link
    The probability of evaporation induced by R+R^+ and R−R^- rotons at the surface of superfluid helium is calculated using time dependent density functional theory. We consider excitation energies and incident angles such that phonons do not take part in the scattering process. We predict sizable evaporation rates, which originate entirely from quantum effects. Results for the atomic reflectivity and for the probability of the roton change-mode reflection are also presented.Comment: 11 pages, REVTEX, 3 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm
    • …
    corecore