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Note: Utilizing Pb(Zrg 95Tio.05)O3 ferroelectric ceramics to scale down
autonomous explosive-driven shock-wave ferroelectric generators

Sergey |. Shkuratov,’? Jason Baird,"? and Evgueni F. Talantsev®

' Loki Incorporated, Rolla, Missouri 65409, USA

2Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla,

Missouri 65409-0450, USA
3Pulsed Power LLC, Lubbock, Texas 79416, USA

(Received 28 May 2012; accepted 19 June 2012; published online 9 July 2012)

Further miniaturization of recently designed autonomous ferroelectric generators (FEGs) [S. I. Shku-
ratov, J. Baird, and E. F. Talantsev, Rev. Sci. Instrum. 82, 086107 (2011)], which are based on the
effect of explosive-shock-wave depolarization of poled ferroelectrics is achieved. The key minia-
turization factor was the utilization of high-energy density Pb(Zr(9sTig.05)O3 (PZT 95/5) ferroelec-
tric ceramics as energy-carrying elements of FEGs instead of the previously used Pb(Zr¢ 5, Tig.43)O3
(PZT 52/48). A series of experiments demonstrated that FEGs based on smaller PZT 95/5 ferroelec-
tric elements are capable of producing the same output voltage as those based on PZT 52/48 ele-
ments twice as large. It follows from the experimental results that the FEG output voltage is directly
proportional to the thickness of PZT 95/5 samples. A comparison of the operation of FEGs based
on PZT 95/5 and on PZT 52/48 ferroelectrics is presented. © 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4733294]

From the end of the 1950s, the idea to use shocked ferro-
electrics for generation of pulsed high voltages and currents'
was widely discussed in the literature (see Ref. 2 and refer-
ences therein). This idea initiated systematic studies of fer-
roelectrics compressed by planar shock waves generated by
projectile impacts from light gas guns a few decades ago at
the U.S. Department of Energy’s Sandia National Laborato-
ries. These studies continue all over the world (Ref. 2 and ref-
erences herein); however, the size and complexity of gas guns
make it impossible to use them to create practical systems
based on shock-wave depolarization effect. Recently,>* we
reported on the successful utilization of the shock depolariza-
tion effect for first practical autonomous ultrahigh-voltage fer-
roelectric generator (FEG), in which the ferroelectric element
was shocked directly by the detonation of a high-explosive
(HE) charge. This FEG (Refs. 3 and 4) was based on PZT
52/48 ceramics as energy-carrying elements. There are two
main reasons to use PZT 52/48: it possesses excellent ferro-
electric and piezoelectric properties, and this material is in
mass production and commercially available in a variety of
shapes, sizes, and trademarks (it is widely used in modern
electromechanical technology).

Since publishing Ref. 4, we further miniaturized the
explosive-driven FEG, but the miniaturization of explosive-
driven devices creates several challenges.’> As such, we fo-
cused on two approaches, which we describe herein. The first
approach addresses a challenge related to decreasing the geo-
metrical dimensions of the HE charge. Recently,® we reported
on one of the limitations to reducing the HE charge—scaling
down the charge size results in distortion of the shock wave
front. We experimentally demonstrated in Ref. 6 that shock
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front geometry has a significant effect on the shock depolar-
ization of poled PZT 52/48 ferroelectrics.

Our second approach is to scale down the size of the fer-
roelectric energy-carrying element of the FEG. In this note,
we report on successful two-fold reduction of the size of high-
voltage FEG ferroelectric elements through the utilization of
poled PZT 95/5 ceramics that possess physical properties un-
der shock compression different from those of PZT 52/48.

In contrast to PZT 52/48, PZT 95/5 is not a good
piezoelectric material and it is not used in electromechani-
cal devices. PZT 95/5 was originally developed’ at the U.S.
Department of Energy’s Sandia National Laboratories. This
ferroelectric ceramic was not commercially available until re-
cent time because of the absence of industry demand. For the
past few years, production technology for PZT 95/5 ferroelec-
tric ceramics has been under development by several research
groups, including TRS Technologies Inc.®

The FEG design we developed earlier for PZT 52/48
ferroelectrics®* was used as a basis for this work. A schematic
diagram of the FEG is in Fig. 1. The FEG consisted of two
parts: a detonation chamber and a ferroelectric element in-
corporated in a plastic body. The shock wave in the ferro-
electric element was generated by detonating the HE charge,
which was in direct contact with the top of the plastic body.
For the HE charge, we used desensitized cyclotrimethy-
lene trinitramine (RDX) high explosives and a RISI RP-501
detonator.” The diameter of the FEGs was 38 mm, and the
mass of RDX was 10.4 + 0.7 g.

We conducted experiments requiring explosive charges
in the smaller blast chamber of the Energetic Materials Re-
search Laboratory at the Missouri University of Science and
Technology, Rolla, Missouri. We placed the FEGs within the
blast chamber, and connected their output terminals to a North
Star PVM-5 high voltage probe located outside the chamber.
Other experimental details are described in Refs. 4, 6, and 10.

© 2012 American Institute of Physics


http://dx.doi.org/10.1063/1.4733294
http://dx.doi.org/10.1063/1.4733294
http://dx.doi.org/10.1063/1.4733294
mailto: shkuratov@lokiconsult.com

076104-2 Shkuratov, Baird, and Talantsev
HE Chamber FEG'Body

L2
silver Electrode g- g

2
AR, SE
[
a =

Epoxy

Ferroelectric Element

FIG. 1. Schematic diagram of a ferroelectric generator with a ferroelectric
element that is shocked directly by the detonation of high explosives. Py is
the polarization vector. Us is the shock vector.

The FEGs (Fig. 1) operated as follows. After ignition
of the detonator, the detonation wave (detonation velocity
8.04 km/s and theoretical dynamic pressure at the shock front
36.7 GPa) propagated in the HE charge toward the top of
the plastic body. The hemispherical shock wave front reached
main body of the generator and propagated through it. Be-
cause of shock depolarization, a surface electric charge was
released at the electrodes of the ferroelectric element and volt-
age was generated at the output terminals of the FEG.

In this note, we investigated the generation of high volt-
age with PZT 95/5 and PZT 52/48 ferroelectric elements. Our
primary goal in this work was to obtain dependences between
the peak output voltage, U,, produced by the FEGs, and the
thickness, d, of the ferroelectric elements. As such, we studied
high voltage generation using a single ferroelectric element
within each FEG.

We purchased custom-made PZT 95/5 ceramic samples
for these tests from TRS Technologies Inc.® Table I shows
the sizes of PZT 95/5 samples (thickness (d), width (w), and
length (/)) that we investigated. TRS poled each PZT 95/5
sample across its thickness to its remnant polarization.

The parameters of the PZT 95/5 ferroelectrics were:
theoretical density (TD) 8.00 g/cm?, typical density
95%-97%TD, the dielectric constant and loss (unpoled)
410%/2.00%, the dielectric constant and loss (poled)
350%/1.97%, remnant polarization 0.32 C/m?2, piezoelec-
tric coefficients dss3 and d3; were 68 pC/N and —16 pC/N,
respectively, voltage coefficients gs3 and g3; were 26.28 and
—5.99 x 1073 VN, respectively, electromechanical cou-
pling coefficients kp, k31, and k; were 18.2%, 11.1%, and
46.0%, respectively, elastic compliances S;jg and S|z were
7.68 and —1.97 x 10~'2 m?/N, respectively, acoustic velocity
= 4194 m/s, Poissons’ ratio = 0.2572.

TABLE 1. Sizes of PZT 95/5 ferroelectric elements and peak output
voltages, Uy, produced by the FEGs.

FEG designation PZT 95/5 element size (mm) FEG output voltage (kV)
Case 1 3.0(d) x 16.0(w) x 28.0(]) 22.1+£19
Case 2 6.0(d) x 16.3(w) x 38.0(]) 412 +2.8
Case 3 9.0(d) x 14.2(w) x 44.2(1) 59.2+27
Case 4 11.5(d) x 13.0(w) x 46.0() 789+ 2.6
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FIG. 2. Typical waveform of the output voltage, U(t), produced by FEGs
containing a 11.5(d) mm x 13.0(w) mm x 46.0(/) mm PZT 95/5 element
(Case 4).

We purchased PZT 52/48 standard commercial samples
from ITT Corp. for these tests; the properties of these samples
can be found in Ref. 10. ITT poled each PZT 52/48 sample
across its thickness to its remnant polarization.

A typical waveform of the output voltage, U(#), produced
by a FEG containing a PZT 95/5 element for Case 4 is shown
in Fig. 2. The voltage increased during 2.1 us to its peak value
Uy, =79.8kV att=16.1 us.

The generation of the high voltage by the FEG is direct
experimental evidence of the depolarization of a PZT 95/5 el-
ement by a hemispherical shock wave propagating across the
polarization vector of the ferroelectric material. After reach-
ing its maximum, U(¢) decreased to 10 kV (Fig. 2) and lasted
for 5.5 us.

Peak output voltages, U,, produced by FEGs containing
PZT 95/5 elements of four types are summarized in Table I.
It follows from our experimental results that increasing the
thickness of PZT 95/5 elements from 3.0 to 11.5 mm leads to
an increase in the FEG output voltage from 22.1 to 78.9 kV.

Peak output voltages produced by FEGs containing PZT
52/48 elements are summarized in Fig. 3. Typical waveforms,
U(1), of the output voltage produced by FEGs containing PZT
52/48 ceramic elements can be found in Refs. 4 and 10.

Figure 3 shows dependence of the FEG peak output volt-
age, Uy, on the thickness, d, of PZT 95/5 and PZT 52/48 ele-
ments. It follows from our experimental results that Uy is di-
rectly proportional to the thickness, d, of the elements for PZT
95/5 and PZT 52/48. Comparison of the d vs U, graphs in
Fig. 3 allows one to conclude that the use of PZT 95/5 fer-
roelectric materials allows a two-fold miniaturization of the
FEG energy-carrying element in comparison with the PZT
52/48.

The shock pressure at the HE charge-plastic body inter-
face was the same in all experiments with PZT 95/5 and PZT
52/48 samples described above. Apparently, the main reason
of a two-fold increase of output voltage produced by the FEGs
containing PZT 95/5 elements is that at this level of pressure
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FIG. 3. Experimentally obtained output voltages produced by FEGs con-
taining PZT 95/5 elements (triangles) and PZT 52/48 elements (diamonds)
vs ferroelectric element thickness, and fitting curves for experimental data in
a presumption that shocked ferroelectrics obey the Ug(d) = const - d'~¢ law.

(36.7 GPa) the PZT ceramics having the formulation lying
very close to a boundary between ferroelectric and antiferro-
electric phases (PZT 95/5) has a higher energy density com-
pared with that around morphotropic phase boundary (PZT
52/48).

Note that the d vs U, dependence for PZT 52/48
(Fig. 3) shows non-linear behaviour when the element thick-
ness is greater than 10 mm. Therefore, thick PZT 52/48 el-
ements are less effective in producing high voltage in com-
parison with thinner ones. Apparently, this effect is related
to breakdown within PZT 52/48 compressed by a transverse
shock wave (shock front propagates across the polarization
vector Pg). It was demonstrated in Ref. 10 that the Ug in lon-
gitudinally shock compressed (shock front propagates along
the polarization vector Py) PZT 52/48 is described by the
U,(d) = const - d'~% law (where d is the thickness of a ferro-
electric element, and & is a coefficient that is justified by the
mechanisms of electric breakdown'!~1%). Studies of the break-
down in PZT 52/48 compressed by transverse shock are in
progress now.

Rev. Sci. Instrum. 83, 076104 (2012)

In Fig. 3, we fitted our experimental data for PZT 52/48
and PZT 95/5 under the presumption that both ferroelectrics
shocked by transverse shocks obey the Uy(d) = const- d'—¢
law. It follows from the simulated curve in Fig. 3 that a
49-mm-thick PZT 52/48 sample would be capable of gen-
erating U, = 125 kV. This result is close to our recently
reported experimental data* for transverse shock-wave FEG
utilizing ferroelectric module containing four PZT 52/48 el-
ements connected in series (total thickness of 50.8 mm),
that was capable of producing output voltages, Us, of 123.3
=+ 3.2 kV. In accordance with our simulation results (Fig. 3),
the thickness for a PZT 95/5 ferroelectric element that
would be capable of producing U, = 125 kV is 19.3 mm,
which is 2.5 times thinner than PZT 52/48 for the same
voltage.

In conclusion, we experimentally demonstrated that a
two-fold miniaturization of a high-voltage FEG can be
achieved by utilization of Pb(Zr(9sTig05)O3 ferroelectric ce-
ramics as energy-carrying elements. It follows from our ex-
perimental results that FEGs based on 95/5 ferroelectric el-
ements of 6.9 cm® volume are capable of producing output
voltages up to 80 kV. We developed FEGs of this type that
provided reliable and reproducible operation.
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