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Note: Miniature 120-kV autonomous generator based on transverse
shock-wave depolarization of Pb(Zry52Tig.45)O3 ferroelectrics
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'Loki Incorporated, Rolla, Missouri 65409, USA

2Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla,

Missouri 65409-0450, USA
3Pulsed Power LLC, Lubbock, Texas 79416, USA

(Received 3 June 2011; accepted 25 July 2011; published online 18 August 2011)

The design of autonomous ultrahigh-voltage generators with no moving metallic parts based on trans-
verse explosive shock wave depolarization of Pb(Zry 5, Tig45)O3 (PZT 52/48) poled ferroelectrics was
explored and studied. It follows from experimental results that the output voltage produced by the
shock-wave ferroelectric generators (FEGs) is directly proportional to the number of PZT 52/48 ele-
ments connected in series. It was demonstrated that miniature FEGs (volume less than 180 cm?) were
capable of reliably producing output voltage pulses with amplitudes exceeding 120 kV which is the
record reported in open literature. © 2011 American Institute of Physics. [doi:10.1063/1.3625276]

The development of miniature explosively driven
ultrahigh-voltage (100 kV and up) prime power sources that
are important for success of some scientific and engineer-
ing projects is an unexplored area of modern technology.'
We are working on the development of ultrahigh-voltage
prime power sources since 2000.> In accordance with our
previous concept, the device contains two stages: a prime
power stage and a pulse-transforming stage. We experimen-
tally proved this concept earlier.* The prime power was pro-
vided by shock-wave ferroelectric generators (FEG) (Ref. 5)
or shock-wave ferromagnetic generators (FMG),® and a vec-
tor inversion generator (VIG) (Ref. 7) was used as a pulse-
transforming stage. These FMG-VIG and FEG-VIG systems
were capable of producing high-voltage pulses with ampli-
tudes up to 92 kV.?> However, there are several disadvantages
in two-stage ultrahigh-voltage generators, i.e., their complex-
ity, large size, and weight.

In this note, we report on the results of the development
of our second concept of autonomous ultrahigh-voltage gen-
erator. It is a single-stage FEG that is capable of produc-
ing ultrahigh-voltage without a pulse-transforming stage or
any other power-conditioning stage. The starting point for the
development of this generator was the results we obtained
earlier with planar-shock-wave FEGs.>® These FEGs rou-
tinely produce output voltages exceeding 25 kV. However,
the presence of a explosively accelerated metallic impactor
that initiates shock wave in the ferroelectric elements in the
generators™? significantly increases the amount of high ex-
plosives (HE) required, increases the size and weight of the
generators, and becomes a limiting factor when developing
miniature ultrahigh-voltage prime power sources. In Ref. 9,
we reported on the detection of longitudinal and transverse
shock depolarization of Pb(Zrg s, Tip43)O3 (PZT 52/48) fer-
roelectrics by cylindrical radially expanding shock waves that
were generated directly from the HE detonation. These effects
can be utilized for construction of axial FEGs that are capa-
ble of producing output voltage below 40 kV level.” In this
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note, we further develop our design approaches. As a result of
these efforts, we developed and studied miniature FEGs that
reliably generate output voltages exceeding 120 k'V.

A schematic diagram of the FEG detailed in this pa-
per is in Fig. 1. The FEG contained two parts: a detonation
chamber and a ferroelectric element incorporated in a plastic
body. The ferroelectric element was encapsulated with epoxy
(Pacer Technology SY-SS) as the electrical insulating mate-
rial. The FEGs (Fig. 1) did not contain an explosively accel-
erated metallic impactor used in planar-shock-wave FEGs.>®
The shock wave in the ferroelectric element of this FEG
(Fig. 1) was generated from the HE detonation because the
HE was in direct contact with the top of the plastic body. We
used desensitized RDX HE (detonation velocity of 8.04 km/s
and theoretical dynamic pressure at the shock front of 36.7
GPa) and RISI RP-501 exploding bridgewire detonators in the
charge system.

We considered ferroelectric elements of different geome-
tries for utilization in ultrahigh-voltage FEGs. The FEG is a
prime power source of a capacitive type, and its output energy,
W, is directly proportional to the square of the amplitude of
the FEG mean output voltage, U,, and to the capacitance of
the ferroelectric element, C,,

Gl (1)
2

It follows from our experimental studies of the generation
of high voltages with PZT 52/48 disk elements that the high-
voltage amplitude produced by the planar-shock-wave FEGs
(Refs. 5 and 8) depend on the thickness of the disk as its main
parameter because the voltage depends on the thickness of
the ferroelectric material between the two electrodes of the
element. The electrodes are placed on the two flat surfaces of
the disk element. Unfortunately, increasing the thickness of
the ferroelectric disk of a given diameter results in a linear
decrease of the FEG capacitance. To keep the capacitance of
the thicker disk at the same level, we have to increase its di-
ameter (and also the diameter of the electrodes). An increase
of the disk diameter causes an increase in the transverse cross

W =

© 2011 American Institute of Physics
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FIG. 1. (Color online) Schematic diagram of the semi-planar-shock-wave
FEG containing (a) a single PZT 52/48 rectangular element (case 1) and (b)
two elements connected in series (case 2). PSV is the shock vector. Py is the
polarization vector. Polarity of the surface charge is shown as (4) and (—).

sectional area of the FEG, which is not appropriate for a sys-
tem intended to be as small in cross section as possible. There-
fore, in this paper, we investigated ultrahigh-voltage gen-
eration with ferroelectric elements of rectangular geometry
(Fig. 1). With these elements, we have the opportunity to in-
crease the capacitance of the FEG [and, correspondingly, the
FEG output energy in accordance with Eq. (1)] by lengthen-
ing the rectangular elements without increasing the FEG cross
sectional dimensions.

We purchased PZT 52/48 rectangular ceramic elements
of 12.7 x 12.7 x 50.8 mm? from the ITT Corp. for these
tests. The ferroelectric elements were poled across their
thicknesses to their remnant polarization by the manufac-
turer. Parameters of PZT 52/48 were as follows: density
7.5 % 10° kg/rn3, dielectric constant ¢ = 1300, Curie tempera-
ture 320 °C, Young’s modulus 7.8 x 10'° N/m?, piezoelectric
constant dz3 = 295 x 10~'2 C/N.

The FEG output voltage was monitored with a North
Star PVM-5 high-voltage probe (resistance 400 M2, capaci-
tance 12 pF) placed outside the blast chamber and connected
to the output terminals of the FEG. Explosive experiments
were conducted in the facilities of the Energetic Materials Re-
search Laboratory at the Missouri University of Science and
Technology.

TABLE I. Parameters of FEGs investigated in this paper.
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The operation of the FEG (Fig. 1) was as follows. Af-
ter initiation of the detonator, the detonation wave propagated
through the HE charge and into the epoxy potting compound
containing the ferroelectric element. The semi-planar shock
wave front then propagated through the PZT 52/48 element,
creating a mechanical stress wave in the element that depo-
larized it. Before the shock compression, the electric field in
the ferroelectric element is equal to zero because of com-
pensation by the surface charge (the bonded charge) of the
polarization of the element, Py, obtained during the poling
procedure. As a result of shock depolarization, shock de-
polarization, the surface electric charge was released at the
electrodes of the PZT 52/48 element and an output voltage
was generated at the output terminals of the FEG. The am-
plitude of the voltage pulse depended on the degree of the
depolarization and physical dimensions of the PZT 52/48
ferroelectrics.

The first experimental series was performed with FEGs
of 38-mm diameter (case 1 in Table I). The detonation cham-
ber cone angle was 60°. The mass of RDX was 10.4 + 0.7 g.
A typical waveform of the output voltage produced by the
FEG for case 1 is shown in Fig. 2. The amplitude of the
voltage pulse was U()max = 39.4 kV with rise time t = 1.6
us. The amplitude of the mean output voltage averaged over
seven experiments of this series was U, = 38.7 &= 1.2 kV.

Recently,’ we studied the generation of high voltage with
identical PZT 52/48 elements (12.7 x 12.7 x 50.8 mm?) in
axial radially expanding shock wave FEGs. Our new FEG
design (Fig. 1) provided a 60% higher voltage amplitude
(Fig. 2) than we obtained from axial FEGs.? It follows from
these experimental results that transverse semi-planar shock
waves provide a higher degree of depolarization of PZT 52/48
ferroelectrics than transverse axial radially expanding shock
waves.’ Possible causes of the observed depolarization effect
may be the different shock front geometry and different shock
front pressure in these two cases, or the effect of shock wave
splitting in PZT 52/48 ferroelectric ceramics.'®!'! It should be
noted that the HE mass in axial FEGs (Ref. 9) was three times
less than that in the semi-planar shock-wave FEGs described
herein.

In order to increase the FEG output voltage, we con-
nected two PZT 52/48 elements in series (case 2). A
schematic diagram of the FEG is in Fig. 1(b). The negative
electrode of the first element was connected to the ground ter-
minal of the FEG. The positive electrode of the first element
was electrically and mechanically connected to the negative
electrode of the second element. To avoid heating the ferro-
electric elements instead of using a soldering procedure, we
used silver epoxy (Chemtronics CW2400) for all connections

FEG designation Case 1 Case 2 Case 3 Case 4

Number of rectangular PZT 52/48 1 2 3 4
elements connected in series

Total thickness of PZT module (mm) 12.7 254 38.1 50.8

U,, FEG mean output voltage (kV) 387+1.2 704 +2.3 102.7 £ 34 1233 +3.2
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FIG. 2. (Color online) Typical waveforms of the output voltage produced
by semi-planar-shock-wave FEGs containing a single PZT 52/48 rectangular
element (case 1), two-element ferroelectric module (case 2), three-element
module (case 3), and four-element module (case 4).

within the FEGs. The positive electrode of the second element
was connected to the high-voltage output terminal of the FEG.
The total thickness of the ferroelectric module was 7 = 25.4
mm. The two-element ferroelectric module (Fig. 1) contained
two systems of surface charges. The positive surface charge of
the first element was adjacent to the negative surface charge
of the second element.

A typical waveform of the output voltage produced by
the FEG for case 2 is in Fig. 2. The U(f)max = 71.0 kV with
T = 2.4 us. The mean voltage U, = 70.4 £ 2.3 kV. It fol-
lows from the experimental results that a twofold increase in
the thickness of the PZT 52/48 module led to an increase in
the FEG output voltage by a factor of 1.8. Based on these
results, we conclude that there is no significant interference
among the surface charges of PZT 52/48 elements connected
in series during shock depolarization. This may not be the
case, however, for other types of ferroelectric materials (these
results are under preparation for publication).

To increase the FEG output voltage above 70 kV, we in-
creased & to 38.1 mm by connecting three PZT 52/48 elements
in series (case 3). The serial connection of the elements was
made in a similar fashion to that in the two-element modules
(Fig. 1). The three elements were aligned, so we increased the
diameter of the FEG to 62 mm. The cone angle of the detona-
tion chamber of this FEG was 60° and the HE mass was 59.0
+25¢.

Rev. Sci. Instrum. 82, 086107 (2011)

A typical waveform of the output voltage produced by
the FEG for case 3 is in Fig. 2. The amplitude of the voltage
exceeded 100 kV; U(t)max = 101 kV with © = 2.4 us. The
mean voltage U, = 102.7 £ 3.4 kV. It is 2.65 times higher
voltage than that produced by a single PZT 52/48 element
with &7 = 12.7 mm. We did not observe any signs of electric
breakdown within the insulation of the FEGs.

The next FEG design was based on four PZT 52/48
elements connected in series (case 4). The elements were
grouped in pairs and placed in a 62 mm diameter FEG. A typ-
ical waveform of the output voltage produced by the FEG for
case 4 is in Fig. 2. The mean voltage U, produced by these
FEGs was 123.3 £ 3.2 kV. We performed experiments with
FEGs having different distances between the top of the FEG
body and the top of the ferroelectric module. It follows from
our experiments that a 30 mm potting material layer provided
reliable electrical insulation in FEG design.

In conclusion, miniature sources of prime power utiliz-
ing transverse shock depolarization of Pb(Zry 5, Ti43)O3 fer-
roelectric ceramic elements by semi-planar shock waves were
designed, constructed, and experimentally tested. The gener-
ators demonstrated reliable and reproducible operation. The
output voltages produced by these miniature autonomous gen-
erators exceeded 120 kV, which is the greatest amplitude
of the FEG output voltage ever reported in open literature.'
These generators (patented by Loki Incorporated (Ref. 12))
can be used as sources of prime power in new scientific and
engineering applications. '
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