25 research outputs found

    Genetic Variants Associated With Development of TMD and Its Intermediate Phenotypes: The Genetic Architecture of TMD in the OPPERA Prospective Cohort Study

    Get PDF
    Genetic risk factors are believed to combine with environmental exposures and contribute to risk of developing temporomandibular disorder (TMD). In this prospective cohort study, 2,737 people without TMD were assessed for common genetic variation in 358 genes known to contribute to nociceptive pathways, inflammation, and affective distress. During a median follow-up period of 2.8 years, 260 people developed first-onset TMD. Hazard ratios (HRs) were computed as measures of association between 2,924 single nucleotide polymorphisms (SNPs) and TMD incidence. After correction for multiple testing, no single SNP was significantly associated with risk of onset TMD. However, several SNPs exceeded Bonferroni correction for multiple comparison or false discovery rate thresholds (FDR=0.05, 0.1, or 0.2) for association with intermediate phenotypes shown to be predictive of TMD onset. Non-specific orofacial symptoms were associated with voltage-gated sodium channel, type 1 alpha subunit (SCN1A, rs6432860, p=2.77×10−5) and angiotensin-I converting enzyme 2 (ACE2, rs1514280, p=4.86×10−5), global psychological symptoms with prostaglandin-endoperoxide synthase 1 (PTGS1, rs3842803, p=2.79×10−6), stress and negative affectivity with amyloid-β (A4) precursor protein (APP, rs466448, p=4.29×10−5), and heat pain temporal summation with multiple PDZ domain protein (MPDZ, rs10809907, p=3.05×10−5). The use of intermediate phenotypes for complex pain diseases revealed new genetic pathways influencing risk of TMD

    Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study

    Get PDF
    Genetic factors play a role in the etiology of persistent pain conditions, putatively by modulating underlying processes such as nociceptive sensitivity, psychological well-being, inflammation, and autonomic response. However, to date, only a few genes have been associated with temporomandibular disorders (TMD). This study evaluated 358 genes involved in pain processes, comparing allelic frequencies between 166 cases with chronic TMD and 1442 controls enrolled in the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) study cooperative agreement. To enhance statistical power, 182 TMD cases and 170 controls from a similar study were included in the analysis. Genotyping was performed using the Pain Research Panel, an Affymetrix gene chip representing 3295 single nucleotide polymorphisms, including ancestry-informative markers that were used to adjust for population stratification. Adjusted associations between genetic markers and TMD case status were evaluated using logistic regression. The OPPERA findings provided evidence supporting previously-reported associations between TMD and two genes: HTR2A and COMT. Other genes were revealed as potential new genetic risk factors for TMD, including NR3C1, CAMK4, CHRM2, IFRD1, and GRK5. While these findings need to be replicated in independent cohorts, the genes potentially represent important markers of risk for TMD and they identify potential targets for therapeutic intervention

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Molecular basis of USP7 inhibition by selective small-molecule inhibitors

    Get PDF
    Ubiquitination controls the stability of most cellular proteins, and its deregulation contributes to human diseases including cancer. Deubiquitinases remove ubiquitin from proteins, and their inhibition can induce the degradation of selected proteins, potentially including otherwise 'undruggable' targets. For example, the inhibition of ubiquitin-specific protease 7 (USP7) results in the degradation of the oncogenic E3 ligase MDM2, and leads to re-activation of the tumour suppressor p53 in various cancers. Here we report that two compounds, FT671 and FT827, inhibit USP7 with high affinity and specificity in vitro and within human cells. Co-crystal structures reveal that both compounds target a dynamic pocket near the catalytic centre of the auto-inhibited apo form of USP7, which differs from other USP deubiquitinases. Consistent with USP7 target engagement in cells, FT671 destabilizes USP7 substrates including MDM2, increases levels of p53, and results in the transcription of p53 target genes, induction of the tumour suppressor p21, and inhibition of tumour growth in mice

    Potential Genetic Risk Factors for Chronic TMD: Genetic Associations from the OPPERA Case Control Study

    No full text
    Genetic factors play a role in the etiology of persistent pain conditions, putatively by modulating underlying processes such as nociceptive sensitivity, psychological well-being, inflammation, and autonomic response. However, to date, only a few genes have been associated with temporomandibular disorders (TMD). This study evaluated 358 genes involved in pain processes, comparing allelic frequencies between 166 cases with chronic TMD and 1442 controls enrolled in the OPPERA (Orofacial Pain: Prospective Evaluation and Risk Assessment) study cooperative agreement. To enhance statistical power, 182 TMD cases and 170 controls from a similar study were included in the analysis. Genotyping was performed using the Pain Research Panel, an Affymetrix gene chip representing 3295 single nucleotide polymorphisms, including ancestry-informative markers that were used to adjust for population stratification. Adjusted associations between genetic markers and TMD case status were evaluated using logistic regression. The OPPERA findings provided evidence supporting previously-reported associations between TMD and two genes: HTR2A and COMT. Other genes were revealed as potential new genetic risk factors for TMD, including NR3C1, CAMK4, CHRM2, IFRD1, and GRK5. While these findings need to be replicated in independent cohorts, the genes potentially represent important markers of risk for TMD and they identify potential targets for therapeutic intervention
    corecore