15 research outputs found

    Supplementation of nitrogen and its influence on free sugars, amino acid and protein metabolism in roots and internodes of wheat

    Get PDF
    Effect of different doses of nitrogen (N) (90, 120, 150 and 180 kg Nha–1) on the activities of aminotransferases and alkaline inorganic pyrophosphatase (AIP) in relation to the accumulation of proteins, amino acids and sugars in roots and internodes at 15 and 40 days post anthesis (DPA) stages was studied in six wheat genotypes namely HD 2967, GLU 1101, PBW 343, BW 9022, PH-132-4840 and PBW 550. Supra-optimal N doses (150 kg Nha–1 and 180 kg Nha–1) accentuated glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT) and alkaline inorganic pyrophosphatase activities in correspondence with an increase in amino acid, protein and sugar content in both roots and internodes in all the six genotypes. Activities of analyzed enzymes were significantly high at 15 days post anthesis (DPA) stage and thereafter declined at maturity (40 DPA) in parallel with decrease in amino acid contents. Maximum activity of GOT, GPT and AIP was observed in HD 2967 and GLU 1101 genotypes along with higher build up of proteins and amino acids which resulted in higher grain yield. Activity of GPT was comparatively high over GOT, indicating its major role towards protein synthesis. Grain filling processes in terms of proteins and amino acids were positively correlated with GOT and GPT activities while sugars were correlated to AIP. Thus, nitrogen acquisition and assimilation resulted in favoured utilization of N in form of amino acid and proteins accumulation while sugar content was also stimulated. Due to immense activities of aminotransferases and higher contents of amino acids and proteins in GLU 1101 and HD 2967 genotypes at optimal dose and higher dose of N, these genotypes hold future potential for developing new cultivars with better grain quality characteristics

    Syringaldazine peroxidase stimulates lignification by enhancing polyamine catabolism in wheat during heat and drought stress

    Get PDF
    Six wheat cultivars, namely PBW 343, PBW 550 (stress susceptible), PBW 621, PBW 175 (drought tolerant), C 306 and HD 2967 (heat tolerant), were used in this study to evaluate the effect of heat and drought stress on the activities of peroxidases (POXs), diamine oxidase (DAO), polyamine oxidase (PAO) and arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in relation to contents of polyamines (PAs), lipid peroxide and lignin. High temperature (HT) elevated activities of syringaldazine peroxidase (SPX), guaiacol peroxidase (GPX) and coniferyl alcohol peroxidase (CPX) in heat tolerant cultivars while, drought stress accentuated ADC/ODC activities in drought tolerant cultivars. Both heat and drought stress enhanced activities of DAO and PAO alongwith contents of H2O2 in PBW 175 and C 306. Amongst studied POXs, SPX activity was relatively more and coincided well with lignin content under HT stress while, the levels of ADC/ODC paralleled with putrescine and spermidine contents under drought stress. Higher build up of thiobarbituric acid reactive substances in cultivars PBW 343 and PBW 550 indicated their membrane instability during both the stresses. Our results revealed that SPX mediated lignification leading to higher cell wall rigidity under heat stress and drought increased PAs involved in ROS scavenging due to presence of positive charges which can bind strongly to the negative charges in cellular components such as proteins and phospholipids and thereby stabilize the membranes under stress conditions
    corecore