625 research outputs found
Recommended from our members
Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at s = 13 TeV and in p–Pb collisions at sNN = 5.02 TeV
Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and p–Pb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| < 0.9 and the transverse-momentum interval 1 < pT< 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 < |∆η| < 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events
Recommended from our members
Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at sNN = 5.02 TeV
Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the “ridge” phenomenon, were discovered in heavy-ion collisions, and later found in pp and p–Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small collision systems. In this Letter, measurements of the long-range correlations in p–Pb collisions at sNN = 5.02 TeV are extended to a pseudorapidity gap of ∆η ~ 8 between particles using the ALICE forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of ∆η ~ 8 for the first time in p–Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small collision systems such as p–Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2(η), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of –3.1 < η < 4.8 in various centrality classes in p–Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small collision systems, the v2(η) measurements are compared with hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small collision systems
Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies
The first measurements of skewness and kurtosis of mean transverse momentum (〈pT〉) fluctuations are reported in Pb–Pb collisions at sNN = 5.02 TeV, Xe–Xe collisions at sNN = 5.44 TeV and pp collisions at s=5.02 TeV using the ALICE detector. The measurements are carried out as a function of system size 〈dNch/dη〉|η|<0.51/3, using charged particles with transverse momentum (pT) and pseudorapidity (η), in the range 0.2<3.0 GeV/c and |η|<0.8, respectively. In Pb–Pb and Xe–Xe collisions, positive skewness is observed in the fluctuations of 〈pT〉 for all centralities, which is significantly larger than what would be expected in the scenario of independent particle emission. This positive skewness is considered a crucial consequence of the hydrodynamic evolution of the hot and dense nuclear matter created in heavy-ion collisions. Furthermore, similar observations of positive skewness for minimum bias pp collisions are also reported here. Kurtosis of 〈pT〉 fluctuations is found to be in good agreement with the kurtosis of Gaussian distribution, for most central Pb–Pb collisions. Hydrodynamic model calculations with MUSIC using Monte Carlo Glauber initial conditions are able to explain the measurements of both skewness and kurtosis qualitatively from semicentral to central collisions in Pb–Pb system. Color reconnection mechanism in PYTHIA8 model seems to play a pivotal role in capturing the qualitative behavior of the same measurements in pp collisions
K *(892)± resonance production in Pb-Pb collisions at √sNN=5.02 TeV
The production of K∗(892)± meson resonance is measured at midrapidity (|y|<0.5) in Pb-Pb collisions at sNN=5.02 TeV using the ALICE detector at the CERN Large Hadron Collider. The resonance is reconstructed via its hadronic decay channel K∗(892)±→KS0π±. The transverse momentum distributions are obtained for various centrality intervals in the pT range of 0.4-16 GeV/c. Measurements of integrated yields, mean transverse momenta, and particle yield ratios are reported and found to be consistent with previous ALICE measurements for K∗(892)0 within uncertainties. The pT-integrated yield ratio 2K∗(892)±/(K++K-) in central Pb-Pb collisions shows a significant suppression at a level of 9.3σ relative to pp collisions. Thermal model calculations result in an overprediction of the particle yield ratio. Although both hadron resonance gas in partial chemical equilibrium (HRG-PCE) and music + smash simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas music + smash simulations tend to overpredict the particle yield ratio. These observations, along with the kinetic freeze-out temperatures extracted from the yields measured for light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which decreases with increasing collision centrality percentile. The pT-differential yield ratios 2K∗(892)±/(K++K-) and 2K∗(892)±/(π++π-) are presented and compared with measurements in pp collisions at s=5.02 TeV. Both particle ratios are found to be suppressed by up to a factor of five at pT<2.0 GeV/c in central Pb-Pb collisions and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor (RAA) shows a smooth evolution with centrality and is found to be below unity at pT>8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium
Multiplicity and event-scale dependent flow and jet fragmentation in pp collisions at √s=13 TeV and in p-Pb collisions at √sNN=5.02 TeV
Long- and short-range correlations for pairs of charged particles are studied via two-particle angular correlations in pp collisions at s = 13 TeV and p–Pb collisions at sNN = 5.02 TeV. The correlation functions are measured as a function of relative azimuthal angle ∆φ and pseudorapidity separation ∆η for pairs of primary charged particles within the pseudorapidity interval |η| < 0.9 and the transverse-momentum interval 1 < pT< 4 GeV/c. Flow coefficients are extracted for the long-range correlations (1.6 < |∆η| < 1.8) in various high-multiplicity event classes using the low-multiplicity template fit method. The method is used to subtract the enhanced yield of away-side jet fragments in high-multiplicity events. These results show decreasing flow signals toward lower multiplicity events. Furthermore, the flow coefficients for events with hard probes, such as jets or leading particles, do not exhibit any significant changes compared to those obtained from high-multiplicity events without any specific event selection criteria. The results are compared with hydrodynamic-model calculations, and it is found that a better understanding of the initial conditions is necessary to describe the results, particularly for low-multiplicity events
Search for jet quenching effects in high-multiplicity pp collisions at √s=13 TeV via di-jet acoplanarity
The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton-proton collisions at s = 13 TeV, using the semi-inclusive azimuthal-difference distribution ∆φ of charged-particle jets recoiling from a high transverse momentum (high-pT,trig) trigger hadron. Jet quenching may broaden the ∆φ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs a pT,trig-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity
Prompt and non-prompt J/ψ production at midrapidity in Pb-Pb collisions at √sNN=5.02 TeV
The transverse momentum (pT) and centrality dependence of the nuclear modification factor RAA of prompt and non-prompt J/ψ, the latter originating from the weak decays of beauty hadrons, have been measured by the ALICE collaboration in Pb–Pb collisions at sNN = 5.02 TeV. The measurements are carried out through the e+e− decay channel at midrapidity (|y| < 0.9) in the transverse momentum region 1.5 < pT < 10 GeV/c. Both prompt and non-prompt J/ψ measurements indicate a significant suppression for pT > 5 GeV/c, which becomes stronger with increasing collision centrality. The results are consistent with similar LHC measurements in the overlapping pT intervals, and cover the kinematic region down to pT = 1.5 GeV/c at midrapidity, not accessible by other LHC experiments. The suppression of prompt J/ψ in central and semicentral collisions exhibits a decreasing trend towards lower transverse momentum, described within uncertainties by models implementing J/ψ production from recombination of c and c ̄ quarks produced independently in different partonic scatterings. At high transverse momentum, transport models including quarkonium dissociation are able to describe the suppression for prompt J/ψ. For non-prompt J/ψ, the suppression predicted by models including both collisional and radiative processes for the computation of the beauty-quark energy loss inside the quark-gluon plasma is consistent with measurements within uncertainties
Photoproduction of K+ K- Pairs in Ultraperipheral Collisions
K+K- pairs may be produced in photonuclear collisions, either from the decays of photoproduced φ(1020) mesons or directly as nonresonant K+K- pairs. Measurements of K+K- photoproduction probe the couplings between the φ(1020) and charged kaons with photons and nuclear targets. The kaon-proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction of K+K- pairs on lead ions in ultraperipheral collisions using the ALICE detector, including the first investigation of direct K+K- production. There is significant K+K- production at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass range 1.1<1.4 GeV/c2 above the φ(1020) resonance, for rapidity |yKK|<0.8 and pT,KK<0.1 GeV/c, the measured coherent photoproduction cross section is dσ/dy=3.37±0.61(stat)±0.15(syst) mb. The center-of-mass energy per nucleon of the photon-nucleus (Pb) system WγPb,n ranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected for φ(1020) photoproduction alone. The mass spectrum is fit to a cocktail consisting of φ(1020) decays, direct K+K- photoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for direct K+K- photoproduction are presented
- …