30,676 research outputs found
Recommended from our members
Predicting Category Intuitiveness With the Rational Model, the Simplicity Model, and the Generalized Context Model
Naïve observers typically perceive some groupings for a set of stimuli as more intuitive than others. The problem of predicting category intuitiveness has been historically considered the remit of models of unsupervised categorization. In contrast, this article develops a measure of category intuitiveness from one of the most widely supported models of supervised categorization, the generalized context model (GCM). Considering different category assignments for a set of instances, the authors asked how well the GCM can predict the classification of each instance on the basis of all the other instances. The category assignment that results in the smallest prediction error is interpreted as the most intuitive for the GCM—the authors refer to this way of applying the GCM as “unsupervised GCM.” The authors systematically compared predictions of category intuitiveness from the unsupervised GCM and two models of unsupervised categorization: the simplicity model and the rational model. The unsupervised GCM compared favorably with the simplicity model and the rational model. This success of the unsupervised GCM illustrates that the distinction between supervised and unsupervised categorization may need to be reconsidered. However, no model emerged as clearly superior, indicating that there is more work to be done in understanding and modeling category intuitiveness
The feasibility of a cognitive behavioural therapy group for men with mild/moderate cognitive impairment
Memory aid groups have often been used as a method for teaching mnemonic strategies to older adults in early stages of dementia. This study describes the use of CBT to address unhelpful memory-related beliefs in three older men with mild/moderate dementia and associated low mood or anxiety. The members were able to participate and engage in the sessions, and changes in behaviour, cognition and affect were monitored over the course of a 7 week group intervention. Recommendations are made for further research
Rotorcraft digital advanced avionics system (RODAAS) functional description
A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented
Recommended from our members
An Evaluation of a Battery of Functional and Structural Tests as Predictors of Likely Risk of Progression of Age-Related Macular Degeneration.
Purpose: To evaluate the ability of visual function and structural tests to identify the likely risk of progression from early/intermediate to advanced AMD, using the Age-Related Eye Disease Study (AREDS) simplified scale as a surrogate for risk of progression. The secondary aim was to determine the relationship between disease severity grade and the observed functional and structural deficits. Methods: A total of 100 participants whose AMD status varied from early to advanced were recruited. Visual function was assessed using cone dark adaptation, 14 Hz flicker and chromatic threshold tests and retinal structure was assessed by measuring drusen volume and macular thickness. The predictive value of the tests was estimated using ordinal regression analysis. Group comparisons were assessed using analysis of covariance. Results: Change in cone dark adaptation (cone τ) and yellow-blue (YB) chromatic sensitivity were independent predictors for AMD progression risk (cone τ, pseudo R2 = 0.35, P < 0.001; YB chromatic threshold, pseudo R2 = 0.16, P < 0.001). The only structural predictor was foveal thickness (R2 = 0.05, P = 0.047). Chromatic sensitivity and cone dark adaptation were also the best functional tests at distinguishing between severity groups. Drusen characteristics clearly differentiated between participants with early and advanced disease, but were not able to differentiate between those with early AMD and controls. Mean differences in retinal thickness existed between severity groups at the foveal (P = 0.040) and inner (P = 0.001) subfields. Conclusions: This study indicates that cone τ, YB chromatic threshold and foveal thickness are independent predictors of likely risk of AMD progression
High Energy Physics from High Performance Computing
We discuss Quantum Chromodynamics calculations using the lattice regulator.
The theory of the strong force is a cornerstone of the Standard Model of
particle physics. We present USQCD collaboration results obtained on Argonne
National Lab's Intrepid supercomputer that deepen our understanding of these
fundamental theories of Nature and provide critical support to frontier
particle physics experiments and phenomenology.Comment: Proceedings of invited plenary talk given at SciDAC 2009, San Diego,
June 14-18, 2009, on behalf of the USQCD collaboratio
Solution of an infection model near threshold
We study the Susceptible-Infected-Recovered model of epidemics in the
vicinity of the threshold infectivity. We derive the distribution of total
outbreak size in the limit of large population size . This is accomplished
by mapping the problem to the first passage time of a random walker subject to
a drift that increases linearly with time. We recover the scaling results of
Ben-Naim and Krapivsky that the effective maximal size of the outbreak scales
as , with the average scaling as , with an explicit form for
the scaling function
Generalized Integer Partitions, Tilings of Zonotopes and Lattices
In this paper, we study two kinds of combinatorial objects, generalized
integer partitions and tilings of two dimensional zonotopes, using dynamical
systems and order theory. We show that the sets of partitions ordered with a
simple dynamics, have the distributive lattice structure. Likewise, we show
that the set of tilings of zonotopes, ordered with a simple and classical
dynamics, is the disjoint union of distributive lattices which we describe. We
also discuss the special case of linear integer partitions, for which other
dynamical systems exist. These results give a better understanding of the
behaviour of tilings of zonotopes with flips and dynamical systems involving
partitions.Comment: See http://www.liafa.jussieu.fr/~latapy
Invasion threshold in heterogeneous metapopulation networks
We study the dynamics of epidemic and reaction-diffusion processes in
metapopulation models with heterogeneous connectivity pattern. In SIR-like
processes, along with the standard local epidemic threshold, the system
exhibits a global invasion threshold. We provide an explicit expression of the
threshold that sets a critical value of the diffusion/mobility rate below which
the epidemic is not able to spread to a macroscopic fraction of subpopulations.
The invasion threshold is found to be affected by the topological fluctuations
of the metapopulation network. The presented results provide a general
framework for the understanding of the effect of travel restrictions in
epidemic containment.Comment: 4 pages, 2 figure
- …