38,182 research outputs found
Optimality of neighbor-balanced designs for total effects
The purpose of this paper is to study optimality of circular
neighbor-balanced block designs when neighbor effects are present in the model.
In the literature many optimality results are established for direct effects
and neighbor effects separately, but few for total effects, that is, the sum of
direct effect of treatment and relevant neighbor effects. We show that circular
neighbor-balanced designs are universally optimal for total effects among
designs with no self neighbor. Then we give efficiency factors of these
designs, and show some situations where a design with self neighbors is
preferable to a neighbor-balanced design.Comment: Published by the Institute of Mathematical Statistics
(http://www.imstat.org) in the Annals of Statistics
(http://www.imstat.org/aos/) at http://dx.doi.org/10.1214/00905360400000048
Decomposition tables for experiments. II. Two--one randomizations
We investigate structure for pairs of randomizations that do not follow each
other in a chain. These are unrandomized-inclusive, independent, coincident or
double randomizations. This involves taking several structures that satisfy
particular relations and combining them to form the appropriate orthogonal
decomposition of the data space for the experiment. We show how to establish
the decomposition table giving the sources of variation, their relationships
and their degrees of freedom, so that competing designs can be evaluated. This
leads to recommendations for when the different types of multiple randomization
should be used.Comment: Published in at http://dx.doi.org/10.1214/09-AOS785 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Decomposition tables for experiments I. A chain of randomizations
One aspect of evaluating the design for an experiment is the discovery of the
relationships between subspaces of the data space. Initially we establish the
notation and methods for evaluating an experiment with a single randomization.
Starting with two structures, or orthogonal decompositions of the data space,
we describe how to combine them to form the overall decomposition for a
single-randomization experiment that is ``structure balanced.'' The
relationships between the two structures are characterized using efficiency
factors. The decomposition is encapsulated in a decomposition table. Then, for
experiments that involve multiple randomizations forming a chain, we take
several structures that pairwise are structure balanced and combine them to
establish the form of the orthogonal decomposition for the experiment. In
particular, it is proven that the properties of the design for such an
experiment are derived in a straightforward manner from those of the individual
designs. We show how to formulate an extended decomposition table giving the
sources of variation, their relationships and their degrees of freedom, so that
competing designs can be evaluated.Comment: Published in at http://dx.doi.org/10.1214/09-AOS717 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Adaptive control system for line-commutated inverters
A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies
Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation
Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved
Numerical aerodynamic simulation facility
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models
Poincaré maps define topography of Vlasov distribution functions consistent with stochastic dynamics
In a recent paper [A. D. Bailey et al., Phys. Rev. Lett. 34, 3124 (1993)], the authors presented direct planar laser induced fluorescence measurements of the oscillatory ion fluid velocity field in the presence of a large amplitude drift-Alfven wave. Surprisingly, the measured speeds were an order of magnitude lower than predicted by standard fluid theory, yet the flow pattern was consistent with the fluid theory. A new model, based on the connection between stochasticity and bulk behavior, is presented which gives insights into the cause of this behavior. It is shown that when particle motion is stochastic, invariant sets of a 'Poincaré map' define a flat-topped particle distribution function consistent with both the electromagnetic field driving the Vlasov equation and the fine-scale single particle dynamics. The approach is described for the general case and explored for a slab model of the observed drift wave
Design and application of polycarbonate capacitors in aerospace ac power systems
Design and testing of ac polycarbonate capacitors for aerospace power system
- …