289 research outputs found

    Water Quality Trends across Select 319 Monitoring Sites in Northwest Arkansas

    Get PDF
    Northwest Arkansas contains two 319 priority watersheds that the Arkansas Natural Resources Commission has identified as being impacted by point source and nonpoint source pollution (i.e., phosphorus, nitrogen, and sediment). This project specifically focused on determining water quality trends at select sites within the Illinois River (HUC# 11110103) and Beaver Reservoir (HUC# 11010001) priority watersheds, including Ballard Creek, Osage Creek, Illinois River, White River, West Fork White River and the Kings River where sufficient constituent data were available. Water quality trends were analyzed using flow‐adjusted constituent concentrations of phosphorus, nitrogen, sediment, sulfate and chloride, and parametric and non‐parametric statistical techniques to determine if constituent concentrations were increasing, decreasing or not significantly changing over time. Overall, flow‐adjusted concentrations of phosphorus and sediment have been decreasing across these watersheds based upon both statistical approaches. The decrease in phosphorus was likely the most important observation, because most water quality concerns in this region have focused on elevated phosphorus concentrations in these transboundary watersheds. These trends can be used along with other watershed information to improve the knowledge of how past, current, and future management decisions have influenced the watershed

    Ocean Color Measurements from Landsat-8 OLI using SeaDAS

    Get PDF
    The Operational Land Imager (OLI) is a multi-spectral radiometer hosted on the recently launched Landsat-8 satellite. OLI includes a suite of relatively narrow spectral bands at 30-meter spatial resolution in the visible to shortwave infrared that make it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in SeaDAS, which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of satellite-based multi-spectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote-sensing reflectance (Rrs; sr exp 1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents such as the concentration of the phytoplankton pigment chlorophyll a

    Ocean Color Measurements with the Operational Land Imager on Landsat-8: Implementation and Evaluation in SeaDAS

    Get PDF
    The Operational Land Imager (OLI) is a multispectral radiometer hosted on the recently launched Landsat8 satellite. OLI includes a suite of relatively narrow spectral bands at 30 m spatial resolution in the visible to shortwave infrared, which makes it a potential tool for ocean color radiometry: measurement of the reflected spectral radiance upwelling from beneath the ocean surface that carries information on the biogeochemical constituents of the upper ocean euphotic zone. To evaluate the potential of OLI to measure ocean color, processing support was implemented in Sea-viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), which is an open-source software package distributed by NASA for processing, analysis, and display of ocean remote sensing measurements from a variety of spaceborne multispectral radiometers. Here we describe the implementation of OLI processing capabilities within SeaDAS, including support for various methods of atmospheric correction to remove the effects of atmospheric scattering and absorption and retrieve the spectral remote sensing reflectance (Rrs; sr1). The quality of the retrieved Rrs imagery will be assessed, as will the derived water column constituents, such as the concentration of the phytoplankton pigment chlorophyll a

    Proposing the Interactivity-Stimulus-Attention Model (ISAM) to Explain and Predict the Enjoyment, Immersion, and Adoption of Purely Hedonic Systems

    Get PDF
    Traditional TAM research primarily focuses on utilitarian systems where extrinsic motivations chiefly explain and predict acceptance. We propose a theoretical model, ISAM, which explains the role of intrinsic motivations in building the user attention that leads to hedonic system acceptance. ISAM combines several theories with TAM to explain how interactivity acts as a stimulus in hedonic contexts—fostering curiosity, enjoyment, and the full immersion of cognitive resources. Two experiments involving over 700 participants validated ISAM as a useful model for explaining and predicting hedonic system acceptance. Immersion and PE are shown to be the primary predictors of behavioral intention to use hedonic systems. Unlike traditional utilitarian adoption research, PEOU does not directly impact BIU, and extrinsic motivations are virtually non-existent. The implications of this study extend beyond hedonic contexts, as users of utilitarian systems continue to demand more hedonic features and enjoyment is often more important than PEOU

    Effect of Carbon Dioxide on the Twinkling Artifact in Ultrasound Imaging of Kidney Stones: A Pilot Study

    Get PDF
    Bone demineralization, dehydration and stasis put astronauts at increased risk of forming kidney stones in space. The color-Doppler ultrasound "twinkling artifact," which highlights kidney stones with color, can make stones readily detectable with ultrasound; however, our previous results suggest twinkling is caused by microbubbles on the stone surface which could be affected by the elevated levels of carbon dioxide found on space vehicles. Four pigs were implanted with kidney stones and imaged with ultrasound while the anesthetic carrier gas oscillated between oxygen and air containing 0.8% carbon dioxide. On exposure of the pigs to 0.8% carbon dioxide, twinkling was significantly reduced after 9-25 min and recovered when the carrier gas returned to oxygen. These trends repeated when pigs were again exposed to 0.8% carbon dioxide followed by oxygen. The reduction of twinkling caused by exposure to elevated carbon dioxide may make kidney stone detection with twinkling difficult in current space vehicles

    Minimal resistance training improves daily energy expenditure and fat oxidation

    Get PDF
    This is not the published version.ABSTRACT: Long-term resistance training (RT) may result in a chronic increase in 24-hour energy expenditure (EE) and fat oxidation to a level sufficient to assist in maintaining energy balance and prevent weight gain. However, the impact of a minimal RT program on these parameters in an overweight college age population, a group at high risk for developing obesity, is unknown. PURPOSE: We aimed to evaluate the effect of 6-months of supervised minimal RT in previously sedentary, overweight (mean±SEM, BMI=27.7±0.5kg/m2) young adults (21.0±0.5yrs) on 24-hr EE, resting metabolic rate (RMR), sleep metabolic rate (SMR) and substrate oxidation using whole room indirect calorimetry 72-h after the last RT session. METHODS: Participants were randomized to RT (1 set, 3 d/wk, 3–6 repetition maximum, 9 exercises) (N=22) or control (C, N=17) groups and completed all assessments at baseline and 6 months. RESULTS: There was a significant (P<0.05) increase in 24-hr EE in the RT (527 ± 220kJ/d) and C (270 ± 168kJ/d) groups, however, the difference between groups was not significant (P=0.30). Twenty-four hour fat oxidation (g/day) was not altered after RT, however; reductions in RQ assessed during both rest (P<0.05) and sleep (P<0.05) suggested increased fat oxidation in RT compared with C during these periods. SMR (8.4±8.6%) and RMR (7.4±8.7%) increased significantly in RT (P<0.001) but not in C, resulting in significant (P<0.001) between group differences for SMR with a trend for significant (P=0.07) between group differences for RMR. CONCLUSION: A minimal RT program that required little time to complete (11 min per session) resulted in a chronic increase in energy expenditure. This adaptation in energy expenditure may have a favorable impact on energy balance and fat oxidation sufficient to assist with the prevention of obesity in sedentary, overweight young adults, a group at high risk for developing obesity

    Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals

    Get PDF
    National Aeronautics and Space Administration's (NASA's) current atmospheric correction (AC) algorithm for ocean color utilizes two bands and their ratio in the near infrared (NIR) to estimate aerosol reflectance and aerosol type. The algorithm then extrapolates the spectral dependence of aerosol reflectance to the visible wavelengths based on modeled spectral dependence of the identified aerosol type. Future advanced ocean color sensors, such as the Ocean Color Instrument (OCI) that will be carried on the Plankton, Aerosol, Cloud, and ocean Ecosystem (PACE) satellite, will be capable of measuring the hyperspectral radiance from 340 to 890 nm at 5-nm spectral resolution and at seven discrete short-wave infrared (SWIR) channels: 940, 1,038, 1,250, 1,378, 1,615, 2,130, and 2,260 nm. To optimally employ this unprecedented instrument capability, we propose an improved AC algorithm that utilizes all atmospheric-window channels in the NIR to SWIR spectral range to reduce the uncertainty in the AC process. A theoretical uncertainty analysis of this, namely, multiband AC (MBAC), indicates that the algorithm can reduce the uncertainty in remote sensing reflectance (Rrs) retrievals of the ocean caused by sensor random noise. Furthermore, in optically complex waters, where the NIR signal is affected by contributions from highly reflective turbid waters, the MBAC algorithm can be adaptively weighted to the strongly absorbing SWIR channels to enable improved ocean color retrievals in coastal waters. We provide here a description of the algorithm and demonstrate the improved performance in ocean color retrievals, relative to the current NASA standard AC algorithm, through comparison with field measurements and assessment of propagated uncertainties in applying the MBAC algorithm to MODIS and simulated PACE OCI data

    Requirements for an Advanced Ocean Radiometer

    Get PDF
    This document suggests requirements for an advanced ocean radiometer, such as e.g. the ACE (Aerosol/Cloud/Ecosystem) ocean radiometer. The ACE ocean biology mission objectives have been defined in the ACE Ocean Biology white paper. The general requirements presented therein were chosen as the basis for the requirements provided in this document, which have been transformed into specific, testable requirements. The overall accuracy goal for the advanced ocean radiometer is that the total radiometric uncertainties are 0.5% or smaller for all bands. Specific mission requirements of SeaWiFS, MODIS, and VIIRS were often used as a model for the requirements presented here, which are in most cases more demanding than the heritage requirements. Experience with on-orbit performance and calibration (from SeaWiFS and MODIS) and prelaunch testing (from SeaWiFS, MODIS, and VIIRS) were important considerations when formulating the requirements. This document describes requirements in terms of the science data products, with a focus on qualities that can be verified by prelaunch radiometric characterization. It is expected that a more comprehensive requirements document will be developed during mission formulatio

    Quantification of Renal Stone Contrast with Ultrasound in Human Subjects

    Get PDF
    Purpose: Greater visual contrast between calculi and tissue would improve ultrasound (US) imaging of urolithiasis and potentially expand clinical use. The color Doppler twinkling artifact has been suggested to provide enhanced contrast of stones compared with brightness mode (B-mode) imaging, but results are variable. This work provides the first quantitative measure of stone contrast in humans for B-mode and color Doppler mode, forming the basis to improve US for the detection of stones. Materials and Methods: Using a research ultrasound system, B-mode imaging was tuned for detecting stones by applying a single transmit angle and reduced signal compression. Stone twinkling with color Doppler was tuned by using low-frequency transmit pulses, longer pulse durations, and a high-pulse repetition frequency. Data were captured from 32 subjects, with 297 B-mode and Doppler images analyzed from 21 subjects exhibiting twinkling signals. The signal to clutter ratio (i.e., stone to background tissue) (SCR) was used to compare the contrast of a stone on B-mode with color Doppler, and the contrast between stone twinkling and blood-flow signals within the kidney. Results: The stone was the brightest object in only 54% of B-mode images and 100% of Doppler images containing stone twinkling. On average, stones were isoechoic with the tissue clutter on B-mode (SCR = 0 dB). Stone twinkling averaged 37 times greater contrast than B-mode (16 dB, p < 0.0001) and 3.5 times greater contrast than blood-flow signals (5.5 dB, p = 0.088). Conclusions: This study provides the first quantitative measure of US stone to tissue contrast in humans. Stone twinkling contrast is significantly greater than the contrast of a stone on B-mode. There was also a trend of stone twinkling signals having greater contrast than blood-flow signals in the kidney. Dedicated optimization of B-mode and color Doppler stone imaging could improve US detection of stones
    • 

    corecore