145 research outputs found

    RNTrajRec: Road Network Enhanced Trajectory Recovery with Spatial-Temporal Transformer

    Full text link
    GPS trajectories are the essential foundations for many trajectory-based applications, such as travel time estimation, traffic prediction and trajectory similarity measurement. Most applications require a large amount of high sample rate trajectories to achieve a good performance. However, many real-life trajectories are collected with low sample rate due to energy concern or other constraints.We study the task of trajectory recovery in this paper as a means for increasing the sample rate of low sample trajectories. Currently, most existing works on trajectory recovery follow a sequence-to-sequence diagram, with an encoder to encode a trajectory and a decoder to recover real GPS points in the trajectory. However, these works ignore the topology of road network and only use grid information or raw GPS points as input. Therefore, the encoder model is not able to capture rich spatial information of the GPS points along the trajectory, making the prediction less accurate and lack spatial consistency. In this paper, we propose a road network enhanced transformer-based framework, namely RNTrajRec, for trajectory recovery. RNTrajRec first uses a graph model, namely GridGNN, to learn the embedding features of each road segment. It next develops a spatial-temporal transformer model, namely GPSFormer, to learn rich spatial and temporal features along with a Sub-Graph Generation module to capture the spatial features for each GPS point in the trajectory. It finally forwards the outputs of encoder model into a multi-task decoder model to recover the missing GPS points. Extensive experiments based on three large-scale real-life trajectory datasets confirm the effectiveness of our approach

    Modulation recognition of low-SNR UAV radar signals based on bispectral slices and GA-BP neural network

    Get PDF
    In this paper, we address the challenge of low recognition rates in existing methods for radar signals from unmanned aerial vehicles (UAV) with low signal-to-noise ratios (SNRs). To overcome this challenge, we propose the utilization of the bispectral slice approach for accurate recognition of complex UAV radar signals. Our approach involves extracting the bispectral diagonal slice and the maximum bispectral amplitude horizontal slice from the bispectrum amplitude spectrum of the received UAV radar signal. These slices serve as the basis for subsequent identification by calculating characteristic parameters such as convexity, box dimension, and sparseness. To accomplish the recognition task, we employ a GA-BP neural network. The significant variations observed in the bispectral slices of different signals, along with their robustness against Gaussian noise, contribute to the high separability and stability of the extracted bispectral convexity, bispectral box dimension, and bispectral sparseness. Through simulations involving five radar signals, our proposed method demonstrates superior performance. Remarkably, even under challenging conditions with an SNR as low as −3 dB, the recognition accuracy for the five different radar signals exceeds 90%. Our research aims to enhance the understanding and application of modulation recognition techniques for UAV radar signals, particularly in scenarios with low SNRs

    Optimal-Location-Selection Query Processing in Spatial Databases

    Get PDF
    Abstract—This paper introduces and solves a novel type of spatial queries, namely, Optimal-Location-Selection (OLS) search, which has many applications in real life. Given a data object set DA, a target object set DB, a spatial region R, and a critical distance dc in a multidimensional space, an OLS query retrieves those target objects in DB that are outside R but have maximal optimality. Here, the optimality of a target object b 2 DB located outside R is defined as the number of the data objects from DA that are inside R and meanwhile have their distances to b not exceeding dc. When there is a tie, the accumulated distance from the data objects to b serves as the tie breaker, and the one with smaller distance has the better optimality. In this paper, we present the optimality metric, formalize the OLS query, and propose several algorithms for processing OLS queries efficiently. A comprehensive experimental evaluation has been conducted using both real and synthetic data sets to demonstrate the efficiency and effectiveness of the proposed algorithms. Index Terms—Query processing, optimal-location-selection, spatial database, algorithm. Ç

    Low-complexity three-dimensional AOA-cross geometric center localization methods via multi-UAV network

    Get PDF
    The angle of arrival (AOA) is widely used to locate a wireless signal emitter in unmanned aerial vehicle (UAV) localization. Compared with received signal strength (RSS) and time of arrival (TOA), AOA has higher accuracy and is not sensitive to the time synchronization of the distributed sensors. However, there are few works focusing on three-dimensional (3-D) scenarios. Furthermore, although the maximum likelihood estimator (MLE) has a relatively high performance, its computational complexity is ultra-high. Therefore, it is hard to employ it in practical applications. This paper proposed two center of inscribed sphere-based methods for 3-D AOA positioning via multiple UAVs. The first method could estimate the source position and angle measurement noise at the same time by seeking the center of an inscribed sphere, called the CIS. Firstly, every sensor measures two angles, the azimuth angle and the elevation angle. Based on that, two planes are constructed. Then, the estimated values of the source position and the angle noise are achieved by seeking the center and radius of the corresponding inscribed sphere. Deleting the estimation of the radius, the second algorithm, called MSD-LS, is born. It is not able to estimate angle noise but has lower computational complexity. Theoretical analysis and simulation results show that proposed methods could approach the Cramér–Rao lower bound (CRLB) and have lower complexity than the MLE
    • …
    corecore