923 research outputs found

    Entanglement monogamy and entanglement evolution in multipartite systems

    Get PDF
    We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems. For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block entanglement form and qubit-block form in the interval. © 2009 The American Physical Society.published_or_final_versio

    Design of reflective filters based on organic materials using genetic algorithms

    Get PDF
    In this work we propose a genetic algorithm for the design of reflective filters consisting of organic materials. The algorithm chooses the materials of the layers from the list of available materials and chooses their thickness in order to obtain optimal reflectance characteristics. The wavelength dependence of the refractive index and the coefficient of extinction of the layers is taken into account.published_or_final_versio

    InGaP/GaAsSb/GaAs DHBTs with low turn-on voltage and high current gain

    Get PDF
    An InGaP/GaAsSb/GaAs double heterojunction bipolar transistor (DHBT) is presented. It features the use of a fully strained pseudomorphic GaAsSb (Sb composition: 10.4%) as the base layer and an InGaP layer as the emitter, which both eliminates the misfit dislocations and increases the valence band discontinuity at the InGaP/GaAsSb interface. A current gain of 200 has been obtained from the InGaP/GaAsSb/GaAs DHBT, which is the highest value obtained from GaAsSb base GaAs-based HBTs. The turn-on voltage of the device is typically 0.914 V for the 10.4% Sb composition, which is 0.176V tower than that of traditional InGaP/GaAs HBT. The results show that GaAsSb is a suitable base material for reducing the turn-on voltage of GaAs HBTs.published_or_final_versio

    Surface treatments of indium-tin-oxide substrates: Comprehensive investigation of mechanical, chemical, thermal, and plasma treatments

    Get PDF
    Various surface treatments significantly affect the work function and surface roughness of indium tin oxide (ITO), and thusly influence charge injection and overall performance of organic light emitting diodes (OLEDs). Large number of treatments, most commonly oxygen plasma treatment and UV-ozone treatment, have been proposed to improve characteristics of ITO. In this work, we have investigated a) mechanical treatments (mechanical rubbing, followed by ultrasonic bath), b) chemical treatments (dipping into aqueous solutions of various acids, including acids which have not been investigated previously) c) thermal treatments (thermal annealing in different atmospheres) d) plasma treatments e) UV ozone treatment f) different combinations of the above. We have measured surface sheet resistance of the samples and investigated surface morphology of the treated samples and compared them to "as-received" samples. We have selected several treatments giving best results. Then we have fabricated OLEDs using ITO substrates treated with treatments selected, as well as a control OLED fabricated on "as-received" ITO. The impact of ITO treatments on the performance of OLEDs have been investigated on two types of devices, OLEDs with and without transport layer, having the structures glass/ITO/Alq 3/Al and glass/ITOFrPD/Alq 3/Al, respectively, where Alq 3 (tris-(8-hydroxyquinoline) aluminum) is emitting layer and TPD (N,N′-diphenyl-N,N′-bis(3-methyl-phenyl)-1, 1′ biphenil-4,4′diamine) is a hole transport layer.published_or_final_versio

    Targeted knock-down of miR21 primary transcripts using snoMEN vectors induces apoptosis in human cancer cell lines

    Get PDF
    We have previously reported an antisense technology, 'snoMEN vectors', for targeted knock-down of protein coding mRNAs using human snoRNAs manipulated to contain short regions of sequence complementarity with the mRNA target. Here we characterise the use of snoMEN vectors to target the knock-down of micro RNA primary transcripts. We document the specific knock-down of miR21 in HeLa cells using plasmid vectors expressing miR21-targeted snoMEN RNAs and show this induces apoptosis. Knock-down is dependent on the presence of complementary sequences in the snoMEN vector and the induction of apoptosis can be suppressed by over-expression of miR21. Furthermore, we have also developed lentiviral vectors for delivery of snoMEN RNAs and show this increases the efficiency of vector transduction in many human cell lines that are difficult to transfect with plasmid vectors. Transduction of lentiviral vectors expressing snoMEN targeted to pri-miR21 induces apoptosis in human lung adenocarcinoma cells, which express high levels of miR21, but not in human primary cells. We show that snoMEN-mediated suppression of miRNA expression is prevented by siRNA knock-down of Ago2, but not by knock-down of Ago1 or Upf1. snoMEN RNAs colocalise with Ago2 in cell nuclei and nucleoli and can be co-immunoprecipitated from nuclear extracts by antibodies specific for Ago2

    Resonances in J/ψ→ϕπ+π−J/\psi \to \phi \pi ^+\pi ^- and ϕK+K−\phi K^+K^-

    Full text link
    A partial wave analysis is presented of J/ψ→ϕπ+π−J/\psi \to \phi \pi ^+\pi ^- and ϕK+K−\phi K^+K^- from a sample of 58M J/ψJ/\psi events in the BES II detector. The f0(980)f_0(980) is observed clearly in both sets of data, and parameters of the Flatt\' e formula are determined accurately: M=965±8M = 965 \pm 8 (stat) ±6\pm 6 (syst) MeV/c2^2, g1=165±10±15g_1 = 165 \pm 10 \pm 15 MeV/c2^2, g2/g1=4.21±0.25±0.21g_2/g_1 = 4.21 \pm 0.25 \pm 0.21. The ϕππ\phi \pi \pi data also exhibit a strong ππ\pi \pi peak centred at M=1335M = 1335 MeV/c2^2. It may be fitted with f2(1270)f_2(1270) and a dominant 0+0^+ signal made from f0(1370)f_0(1370) interfering with a smaller f0(1500)f_0(1500) component. There is evidence that the f0(1370)f_0(1370) signal is resonant, from interference with f2(1270)f_2(1270). There is also a state in ππ\pi \pi with M=1790−30+40M = 1790 ^{+40}_{-30} MeV/c2^2 and Γ=270−30+60\Gamma = 270 ^{+60}_{-30} MeV/c2^2; spin 0 is preferred over spin 2. This state, f0(1790)f_0(1790), is distinct from f0(1710)f_0(1710). The ϕKKˉ\phi K\bar K data contain a strong peak due to f2′(1525)f_2'(1525). A shoulder on its upper side may be fitted by interference between f0(1500)f_0(1500) and f0(1710)f_0(1710).Comment: 17 pages, 6 figures, 1 table. Submitted to Phys. Lett.

    Measurement of the Branching Fraction of J/psi --> pi+ pi- pi0

    Full text link
    Using 58 million J/psi and 14 million psi' decays obtained by the BESII experiment, the branching fraction of J/psi --> pi+ pi- pi0 is determined. The result is (2.10+/-0.12)X10^{-2}, which is significantly higher than previous measurements.Comment: 9 pages, 8 figures, RevTex

    Search for K_S K_L in psi'' decays

    Full text link
    K_S K_L from psi'' decays is searched for using the psi'' data collected by BESII at BEPC, the upper limit of the branching fraction is determined to be B(psi''--> K_S K_L) < 2.1\times 10^{-4} at 90% C. L. The measurement is compared with the prediction of the S- and D-wave mixing model of the charmonia, based on the measurements of the branching fractions of J/psi-->K_S K_L and psi'-->K_S K_L.Comment: 5 pages, 1 figur

    First Measurements of eta_c Decaying into K^+K^-2(pi^+pi^-) and 3(pi^+pi^-)

    Full text link
    The decays of eta_c to K^+K^-2(pi^+pi^-) and 3(pi^+pi^-) are observed for the first time using a sample of 5.8X10^7 J/\psi events collected by the BESII detector. The product branching fractions are determined to be B(J/\psi-->gamma eta_c)*B(eta_c-->K^+K^-pi^+pi^-pi^+pi^-)=(1.21+-0.32+- 0.23)X10^{-4},B(J/ψ−−>gammaetac)∗B(etac−−>K∗0Kˉ∗0pi+pi−)=(1.29+−0.43+−0.32)X10−4,B(J/\psi-->gamma eta_c)*B(eta_c-->K^{*0}\bar{K}^{*0}pi^+pi^-)= (1.29+-0.43+-0.32)X10^{-4}, and (J/\psi-->gamma eta_c)* B(eta_c-->pi^+pi^-pi^+pi^-pi^+pi^-)= (2.59+-0.32+-0.48)X10^{-4}. The upper limit for eta_c-->phi pi^+pi^-pi^+pi^- is also obtained as B(J/\psi-->gamma eta_c)*B(eta_c--> phi pi^+pi^-pi^+pi^-)< 6.03 X10^{-5} at the 90% confidence level.Comment: 11 pages, 4 figure
    • …
    corecore