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We analyze the entanglement distribution and the two-qubit residual entanglement in multipartite systems.
For a composite system consisting of two cavities interacting with independent reservoirs, it is revealed that the
entanglement evolution is restricted by an entanglement monogamy relation derived here. Moreover, it is found
that the initial cavity-cavity entanglement evolves completely to the genuine four-partite cavities-reservoirs
entanglement in the time interval between the sudden death of cavity-cavity entanglement and the birth of
reservoir-reservoir entanglement. In addition, we also address the relationship between the genuine block-block
entanglement form and qubit-block form in the interval.
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I. INTRODUCTION

As an important physical resource, entanglement has
widely been applied to quantum communication �1,2� and
quantum computation �3,4�. It is fundamental to characterize
entanglement nature of quantum systems, especially at a
quantitative level. Until now, although the bipartite entangle-
ment is well understood in many aspects, the multipartite
entanglement is far from clear �5� and thus deserves pro-
found understandings. In many-body quantum systems, one
of the most important properties is that entanglement is mo-
nogamous, which means quantum entanglement cannot be
freely shared among many parties. As quantified by the
square of the concurrence �6�, a three-qubit monogamy in-
equality was given by Coffman et al. �7� as CA�BC

2 �CAB
2

+CAC
2 . Recently, its N-qubit generalization was made by Os-

borne and Verstraete �8�. Moreover, using some other en-
tanglement measures, similar monogamy inequalities have
also established �9–14�. However, in these monogamous re-
lations, only the single party partition A1 �A2A3¯An is con-
sidered. Whether it can be generalized to other partitions,
such as two parties cut AiAj �AkAl¯An, is still an open ques-
tion to be answered.

On the other hand, the entanglement dynamical behavior
under the influence of environment is also an important prop-
erty of quantum systems. This is because, in realistic situa-
tions, quantum systems interact unavoidably with the envi-
ronment and may lose their coherence. It was reported
recently that an entangled state of two qubits interacting,
respectively, with two local reservoirs would experience dis-
entanglement in a finite time, even if the coherence is lost
asymptotically �15–18�. This phenomenon is referred to as
entanglement sudden death �ESD� and has received a lot of
attentions both theoretically and experimentally �see a re-
view paper �19� and references therein�.

Recently, López et al. analyzed the entanglement transfer
between two entangled cavity photons and their correspond-
ing reservoirs and showed that the entanglement sudden birth
�ESB� of reservoir-reservoir subsystem must happen when-

ever the ESD of cavity-cavity subsystem occurs �20�. How-
ever, in this process, whether there exists an entanglement
monogamy relation restricting the dynamical evolution is
awaited for further studies. Moreover, in the time interval
where both the cavity-cavity entanglement and the reservoir-
reservoir entanglement are zero, a subtle issue where the ini-
tial entanglement really goes is yet to be resolved, although
the nonzero cavity-reservoir entanglement in this time win-
dow was pointed out.

In this paper, based on a new monogamy relation, the
entanglement dynamics of two cavities interacting with indi-
vidual reservoirs is studied. It is found that the genuine mul-
tipartite entanglement is involved in the dynamical process.
Particularly, at a quantitative level, we show the initial
cavity-cavity entanglement evolves completely to the genu-
ine four-partite entanglement in the time interval between the
ESD and the ESB. In addition, we also address the property
of the genuine multipartite entanglement which exhibits in
the block-block form under the bipartite two-qubit partition.

II. TWO-QUBIT RESIDUAL ENTANGLEMENT
AND MONOGAMY RELATIONS

Let us first recapitulate the monogamy inequality in bipar-
tite single-qubit partition, which can be written as �8�

CA1�A2A3¯An

2 � CA1A2

2 + CA1A3

2 + ¯ + CA1An

2 . �1�

The entanglement between subsystems A1 and A2A3¯An is
quantified by CA1�A2A3¯An

2 ��A1A2A3¯An
�=min�xpx�A1

��A1

x �,
where the �A1

��A1

x �=2�1−tr��A1

x �2� is the linear entropy
�21,22� and the minimum runs over all the pure state decom-
positions. For the two-qubit quantum state �AiAj

, its entangle-
ment is analytically expressed as CAiAj

2 = �max�0,��1−��2

−��3−��4��2, with the decreasing nonnegative real numbers
�i being the eigenvalues of the matrix �ij��y � �y��ij

� ��y
� �y� �6�. Based on the sum of the residual entanglements
MAi

=CAi�R�Ai�
2 −� jCAiAj

2 , a multipartite entanglement measure
for pure states is introduced �23,24�.
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Now we analyze the multiqubit entanglement distribution
under bipartite two-qubit partition. First, we consider a
2N-qubit mixed state �A1A1�A2A2�¯AnAn�

with the reduced density
matrix �AiAi�

being a rank-2 quantum state. For this quantum
state, the following relations hold:

CA1A1��A2A2�¯AnAn�
2

� �
i=2

n

CA1A1��AiAi�
2 �2a�

��
i=2

n

CA1�AiAi�
2 + �

i=2

n

CA1��AiAi�
2 �2b�

��
i=2

n

�CA1Ai

2 + CA1Ai�
2 + CA1�Ai

2 + CA1�Ai�
2 � . �2c�

In the derivation of the above inequalities, we have used the
property that AiAi� is equivalent to a single qubit and the
monogamy relation in Eq. �1�. We here refer to the inequali-
ties �2a� and �2b� as the strong monogamy relations and the
inequality �2c� as the weak monogamy relation. In the rank-2
case, we define the two-qubit residual entanglement as

MAiAi�
��A�NA��N� = C

AiAi��R�AiAi��
2

− � Cij
2 , �3�

where R�AiAi�� denotes the subset of qubits other than AiAi�
and i, j in the sum represent the qubit in the subsets �Ai ,Ai�	
and �R�AiAi��	, respectively. It is obvious that the residual
entanglement is zero when the 2N-qubit state is separable
under the two-qubit partition. As a nontrivial example, we
consider the 2N-qubit W state, which can be written as
�W
2N=�1�10. . .00
+�2�01. . .00
+ . . .+�2n�00. . .01
. For this
quantum state, we have CA1A1��R�A1A1��

2 =4�i=1
2 � j=3

2n ��i�2�� j�2 and

Cij
2 =4��i�2�� j�2. Then, according to Eq. �3�, the two-qubit re-

sidual entanglement is zero. Since the square of the concur-
rence is a good entanglement measure for two-qubit quantum
state, the nonzero residual entanglement MAiAi�

implies the
existence of multipartite entanglement. While for the two-
qubit partition of rank-3 and rank-4 cases, the monogamy
relation in Eq. �2� may not hold �25�.

III. ENTANGLEMENT EVOLUTION IN MULTIPARTITE
CAVITY-RESERVOIR SYSTEMS

In Ref. �20�, López et al. analyzed the entanglement dy-
namics of two cavities interacting with independent reser-
voirs. The initial quantum state of the composite system is
��0
= ���00
+��11
�c1c2

�00
r1r2
, where the two entangled

cavity photons are in a Bell-like state and their correspond-
ing dissipation reservoirs are in the vacuum states. The inter-
action Hamiltonian of a single cavity and an N-mode reser-
voir is H=	
a†a+	�k=1

N 
kbk
†bk+	�k=1

N gk�abk
†+bka

†�. Under
the unitary evolution U�H , t�=Uc1r1

�H , t� � Uc2r2
�H , t�, the

output state is given by

��t
 = ��0000
c1r1c2r2
+ ���t
c1r1

��t
c2r2
, �4�

where ��t
=��t��10
cr+�t��01
cr and the amplitudes ��t�
=exp�−�t /2� and �t�= �1−exp�−�t��1/2 in the large N limit.

For this dynamical process, López et al. disclosed an intrin-
sic connection between the ESD of the cavities and the ESB
of the reservoirs. However, it is not clear whether one can
establish a quantitative relation of the entanglements in dif-
ferent subsystems in the process. Furthermore, it is still a
subtle issue where the entanglement really goes in the time
window between the ESD and the ESB.

We first show that an entanglement monogamy relation
exists and restricts the dynamical process of the multipartite
systems. The reduced density matrix of a single cavity with
its reservoir is �c1r1

�t�=Uc1r1
��c1r1

�0��Uc1r1

† , where �c1r1
�0�

= ���2�00
�00�+ ���2�10
�10� is a rank-2 two-qubit state. Since
the unitary operation does not change the rank of the matrix,
the �c1r1

�t� is also a rank-2 density matrix. Therefore, the
entanglement monogamy relations under the partition
c1r1 �c2r2 always hold in the dynamical procedure. Particu-
larly, we have

Cc1r1�c2r2

2 �t� � Cc1c2

2 �t� + Cr1r2

2 �t� + Cc1r2

2 �t� + Cc2r1

2 �t� , �5�

where the two-qubit entanglements are

Cc1c2

2 �t� = 4�max�����2� − ����2,0��2,

Cr1r2

2 �t� = 4�max����2� − ����2,0��2,

Cc1r2

2 �t� = Cc2r1

2 �t� = 4�max������ − ����2,0��2. �6�

Here, the bipartite entanglements are quantified by the square
of the concurrence rather than the concurrence in the analysis
of López et al. It should be emphasized that, once the initial
state is given, the bipartite entanglement Cc1r1�c2r2

2 ��t�
=4����2 is invariant in the entanglement evolution, where
the invariance property of entanglement under local unitary
operations is used.

In Ref. �20�, the multipartite entanglement is quantified by
the multipartite concurrence CN �26�. However, CN is unable
to characterize completely the genuine multipartite entangle-
ment. For example, when the quantum state is a tensor prod-
uct of two Bell states, CN is nonzero. In this paper, we con-
sider the two-qubit residual entanglement

Mc1r1
��t� = Cc1r1�c2r2

2 �t� − � Cij
2 �t� , �7�

where i� �c1 ,r1	 and j� �c2 ,r2	. This quantity cannot only
validate the monogamy relation, but also serve as an indica-
tor of genuine multipartite entanglement in the dynamical
process. According to the expression of ��t
 in Eq. �4�, one
can deduce that all its three-tangles �7� �3��ijk�=0 because
�ijk can be written as the mix of a W state and a product state.
Therefore, the nonzero Mc1r1

��t� indicates only the genuine
four-qubit entanglement. In Fig. 1, we plot the residual en-
tanglement Mc1r1

as a function of the initial-state amplitude
��� and the dissipation time �t. For a given value of the �,
the Mc1r1

��t� changes from zero to a maximum value and
then decreases asymptotically to zero when �t→�. More-
over, the maximum values of Mc1r1

��t� occur in the time
�t=ln 2 being independent of the amplitude �. For all pos-
sible �, the maximum of the residual entanglement is
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Mc1r1
�� , ln 2�= �13�13–19� /34�0.819 77, where ���= ��9

+�13� /34�1/2�0.608 89.
Now, we look into the subtle issue where the initial en-

tanglement goes in the time interval when both cavity-cavity
and reservoir-reservoir entanglements are zero. We choose
the initial-state parameter �=1 /�10 which is the same as
that in Ref. �20� and for this value, there is such a time
window. In Fig. 2, we plot the two-qubit residual entangle-
ment Mc1r1

and related bipartite concurrences C2 against the
parameter �t. The bipartite entanglement Cc1r1�c2r2

2 ��t� in the
process is a conserved quantity �=0.36� and the monogamy
relation in Eq. �5� restricts the entanglement evolution. The
two-qubit residual entanglement Mc1r1

changes from zero to
the maximum 0.36 in the time �0,−ln�2 /3��, then the value
keeps unchanged until �t=ln 3, and finally the Mc1r1

de-
creases asymptotically to zero as the time �t→�. This indi-
cates that the genuine multipartite entanglement is always
involved in the dynamical process. Particularly, in the pla-
teau of �t� �−ln�2 /3� , ln 3� where all the Cij

2 �t� in Eq. �7� are
zero, the initial entanglement Cc1c2

2 �0�=0.36 transfers com-

pletely to the genuine four-qubit entanglement in the com-
posite system �note that all the three-tangles are zero�. In this
region, the Mc1r1

is just the Cc1r1�c2r2

2 and is entanglement
monotone, being able to characterize the genuine four-qubit
entanglement. For other initial-state amplitudes satisfying
���� ��� /2, there is also a plateau of Mc1r1

��t� �see Fig. 1�
whose width and value are �tw=ln��� /��−1� and Mc1r1
=4����2, respectively. After a direct comparison, we can get
that the value is equal to the initial cavity-cavity entangle-
ment �Cc1c2

2 �0�=4����2� and the width is just the time win-
dow �20� between the ESD of cavities and the ESB of res-
ervoirs. Here, according to Eq. �6�, one can prove further
Cc1r2

2 �t�=Cc2r1

2 �t�=0 in the interval. Therefore, we conclude
that the initial entanglement evolves completely to the genu-
ine four-partite entanglement in the time window between
the ESD of cavity subsystem and the ESB of reservoir sub-
system. We also wish to indicate that the nonzero Cc1r1

2 �t� in
Fig. 2 does not come from the initial entanglement Cc1c2

2 �0�,
but is generated by a “local” unitary operation Uc1r1

�H , t�
with the partition c1r1 �c2r2.

IV. BLOCK-BLOCK ENTANGLEMENT VERSUS GENUINE
MULTIPARTITE ENTANGLEMENT

The multiqubit entanglement property in the plateau re-
gion is worthy of a further analysis. For the initial state with
�=1 /�10, the output state of the evolution can be written as

��t
 =
1

�10
�0000
c1r1c2r2

+
3

�10
��t
c1r1

��t
c2r2
, �8�

where ��t
=��t��10
+�t��01
. Its genuine four-qubit en-
tanglement is evaluated in bipartite block-block form, i.e.,
the entanglement measure Mc1r1

��t�=Cc1r1�c2r2

2 ��t�=0.36
characterizes the genuine block-block entanglement between
subsystems c1r1 and c2r2. The case for other � with plateau
region is similar.

Although the three-tangles �3��ijk� and the related Cij
2 in

the plateau region are zero, the three-qubit subsystems ex-
hibit genuine qubit-block entanglements and the relation

Cc1r1�c2r2

2 �t� = Cc1�c2r2

2 �t� + Cr1�c2r2

2 �t� �9�

holds, in which Cc1�c2r2

2 �t�=4����2���t��2 and Cr1�c2r2

2 �t�
=4����2��t��2 being equivalent to the mixed state one-tangle
�8�. This qubit-block entanglement is similar to that of mixed
states in Refs. �27,28� which are entangled but without the
�two-qubit� concurrences and three-tangles. For this kind of
entanglement, our understanding is that it comes from the
genuine multipartite entanglement in its purified state �28�.
Here, Eq. �9� actually presents for the first time a quantitative
relation for understanding the qubit-block entanglement,
with a schematic diagram being depicted in Fig. 3.

V. DISCUSSION AND CONCLUSION

Entanglement monogamy is a fundamental property of
multipartite entangled states. We argue that the violation of
the monogamy relations in Eq. �2� for higher rank cases is
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because the square of the concurrence does not have the
additivity, i.e., CA1A1��A2A2�

2
�CA1A2

2 +CA1�A2�
2 for the tensor product

of two Bell states. The von Neumann entropy has this addi-
tivity property, however, it has the negative residual en-
tanglement for multipartite systems �29�. How to define an
additive entanglement measure with nonnegative residual en-
tanglement is still challenging.

The monogamy relations in Eq. �2� can be applied to
other systems �30� only if the individual system environment
is in a rank-2 quantum state and the evolution has a tensor
structure U�H , t�=US1E1

�H , t� � US2E2
�H , t� � ¯

� USnEn
�H , t�. Moreover, based on this relation, one can de-

rive other useful monogamy inequality. For example, if the
initial state of a three cavity-reservoir composite system is
��0
= ���000
+��111
�c�000
r and the individual cavity-

reservoir interaction is the same as the previous one, we can
derive

Cc1r1�c2r2c3r3

2 �0� � �3„�c1c2c3
�t�… + �3„�r1r2r3

�t�… , �10�

where Cc1r1�c2r2c3r3

2 �0�=4����2 gives an upper bound for the
three-tangles in the entanglement evolution.

In conclusion, we show that a monogamy relation restricts
the entanglement evolution of two cavities with individual
reservoirs. Moreover, based on the relation, we find the
initial-state entanglement evolves completely to the genuine
four-partite entanglement in the time interval between the
ESD of cavity-cavity entanglement and the ESB of the
reservoir-reservoir entanglement. In addition, we give a
quantitative relation between the block-block entanglement
and the qubit-block entanglement.
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