27,340 research outputs found

    Parametrization of the Driven Betatron Oscillation

    Full text link
    An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl

    Magnetic spin moment reduction in photoexcited ferromagnets through exchange interaction quenching: Beyond the rigid band approximation

    Full text link
    The exchange interaction among electrons is one of the most fundamental quantum mechanical interactions in nature and underlies any magnetic phenomena from ferromagnetic ordering to magnetic storage. The current technology is built upon a thermal or magnetic field, but a frontier is emerging to directly control magnetism using ultrashort laser pulses. However, little is known about the fate of the exchange interaction. Here we report unambiguously that photoexcitation is capable of quenching the exchange interaction in all three 3d3d ferromagnetic metals. The entire process starts with a small number of photoexcited electrons which build up a new and self-destructive potential that collapses the system into a new state with a reduced exchange splitting. The spin moment reduction follows a Bloch-like law as Mz(ΔE)=Mz(0)(1−ΔE/ΔE0)1βM_z(\Delta E)=M_z(0)(1-{\Delta E}/{\Delta E_0})^{\frac{1}{\beta}}, where ΔE\Delta E is the absorbed photon energy and β\beta is a scaling exponent. A good agreement is found between the experimental and our theoretical results. Our findings may have a broader implication for dynamic electron correlation effects in laser-excited iron-based superconductors, iron borate, rare-earth orthoferrites, hematites and rare-earth transition metal alloys.Comment: 16 pages, 3 figures, one supplementary material fil

    v4 for identified particles at RHIC from viscous hydrodynamics

    Full text link
    Using ideal and viscous hydrodynamics, the ratio of azimuthal moments v4/(v2)^2 is calculated for pions, protons, and kaons in sqrt{s}=200 A*GeV Au+Au collisions. For any value of viscosity here is little dependence on particle species. Ideal hydrodynamics and data show a flat curve as a function of pt. Adding viscosity in the standard way destroys this flatness. However, it can be restored by replacing the standard quadratic ansatz for delta f (the viscous correction to the distribution function at freeze-out) with a weaker momentum dependence.Comment: Proceedings of Hot Quarks 2010, 21-26 June 2010 La Londe Les Maures, 4 pages, 2 figure

    Influence of chloride ions on progress of carbonation in concretes

    Get PDF
    Our infrastructure and environment face unprecedented challenges in addressing a low carbon future with limited natural resources, expanding population, increased pollution and climatic uncertainties. Adaptation and innovations must therefore play a vital role in addressing the anticipated wide ranging complex scenarios ahead. The environment in which construction materials will need to function will become far more complex and aggressive and hence a fundamental revaluation of the most appropriate materials for future infrastructure and environment will be required in order to tackle those challenges. This paper focuses on a class of construction materials, both old and new, based on magnesia (MgO). They include a wide range of materials from those that contain MgO as a small additive to those which solely consist of MgO. They include concrete with MgO as an expansive additive, pervious concrete, alkali-activated cements, magnesium phosphate cements, carbonated products, stabilising additives for ground improvement, self-healing additives, carbon capture and storage materials and binders for waste 105 and contaminated land remediation. Those materials and products offer a range of technical and sustainability benefits for a range of structural, geotechnical and environmental applications. The paper highlights the applications and benefits that would be achieved with magnesia-bearing construction materials

    Study on the immobilisation mechanism of chromium under microwave sintering

    Get PDF
    Chromium (Cr) salts have been widely used in various industries and the discharged waste has caused soil contamination. Among them, Cr(VI) is the main concern due to its high solubility and strong carcinogenic properties. This paper compares the performance of a novel microwave sintering technique with the conventional sintering technique for immobilising Cr contaminated soil. The most significant advantage of the microwave sintering is that it can provide controlled atmosphere (such as reduction atmosphere), which means Cr(Vl) can be reduced to less hazardous Cr(III) during the sintering process. The potential secondary contamination can, thus, be significantly reduced. The XRD results show that with microwave sintering, stronger and sharper peaks were observed, indicating minerals with higher crystallinity have been formed. On the other hand, the SEM results reveal that with conventional electric sintering, the microstructure was dominated by glassy phases, whilst a mixture of glassy and crystalline phases has been identified with microwave sintering. The leaching results show that the contaminated soil processed with microwave has met both British and Chinese leaching standards, and is better than that from the electric sintering technique

    Generating high-order optical and spin harmonics from ferromagnetic monolayers

    Full text link
    High-order harmonic generation (HHG) in solids has entered a new phase of intensive research, with envisioned band-structure mapping on an ultrashort time scale. This partly benefits from a flurry of new HHG materials discovered, but so far has missed an important group. HHG in magnetic materials should have profound impact on future magnetic storage technology advances. Here we introduce and demonstrate HHG in ferromagnetic monolayers. We find that HHG carries spin information and sensitively depends on the relativistic spin-orbit coupling; and if they are dispersed into the crystal momentum k{\bf k} space, harmonics originating from real transitions can be k{\bf k}-resolved and carry the band structure information. Geometrically, the HHG signal is sensitive to spatial orientations of monolayers. Different from the optical counterpart, the spin HHG, though probably weak, only appears at even orders, a consequence of SU(2) symmetry. Our findings open an unexplored frontier -- magneto-high-order harmonic generation.Comment: 19 pages, 4 figure

    High sensitivity microwave detection using a magnetic tunnel junction in the absence of an external applied magnetic field

    Full text link
    In the absence of any external applied magnetic field, we have found that a magnetic tunnel junction (MTJ) can produce a significant output direct voltage under microwave radiation at frequencies, which are far from the ferromagnetic resonance condition, and this voltage signal can be increase by at least an order of magnitude by applying a direct current bias. The enhancement of the microwave detection can be explained by the nonlinear resistance/conductance of the MTJs. Our estimation suggests that optimized MTJs should achieve sensitivities for non-resonant broadband microwave detection of about 5,000 mV/mW

    Study on interoperation and its' implementation of MES to support virtual factory

    Get PDF
    © 2020 Published under licence by IOP Publishing Ltd. The data interoperation between VF (virtual factory) platform and MES (Manufacturing Execution System) plays an important role in intelligent factory construction. The study focuses on the integration strategy between the VF and the MES by incorporating VF manufacturing assets in two ways, i.e., vertical integration (used for production line performance evaluation) and the horizontal integration (cloud manufacturing based on manufacturing assets services discovery and their composition). The VF platform which integrates the manufacturing assets in two manners is designed as the bottom layer in the entire integration framework. It has been applied to build a four tiers integration model in an intelligent production system construction of a domestic ship manufacturer and verified its feasibility and availability

    Multiwavelength Observations of the BL Lacertae Object PKS 2155-304 with XMM-Newton

    Get PDF
    The optical-UV and X-ray instruments on-board XMM-Ndewton provide an excellent opportunity to perform simultaneous observations of violently variable objects over a broad wavelength range. The UV and X-ray bright BL Lac object PKS 2155-304 has been repeatedly observed with XMM-Ndewton about twice per year. In this paper, we present a detailed analysis of the simultaneous multiwavelength variability of the source from optical to X-rays, based on the currently available XMM-Ndewton observations. These observations probed the intra-day multiwavelength variability at optical-UV and X-ray wavelengths of the source. The UV variability amplitude is substantially smaller than the X-ray one, and the hardness ratios of the UV to X-rays correlates with the X-ray fluxes: the brighter the source, the flatter the UV-X-ray spectra. On 2000 May 30-31 the UV and X-ray light curves were weakly correlated, while the UV variations followed the X-ray ones with no detectable lags on 2000 November 19-21. On 2001 November 30 the source exhibited a major X-ray flare that was not detected in the optical. The intra-day UV and X-ray variability presented here is not similar to the inter-day UV and X-ray variability obtained from the previous coordinated extensive multiwavelength campaigns on the source, indicating that different ``modes'' of variability might be operating in PKS 2155-304 on different timescales or from epoch to epoch.Comment: Accepted by Ap
    • …
    corecore