34,522 research outputs found

    Isovector spin-singlet (T=1, S=0) and isoscalar spin-triplet (T=0, S=1) pairing interactions and spin-isospin response

    Full text link
    We review several experimental and theoretical advances that emphasise common aspects of the study of T=1 and T=0 pairing correlations in nuclei. We first discuss several empirical evidences of the special role played by the T=1 pairing interaction. In particular, we show the peculiar features of the nuclear pairing interaction in the low density regime, and possible outcomes such as the BCS-BEC crossover in nuclear matter and, in an analogous way, in loosely bound nuclei. We then move to the competition between T=1 and T=0 pairing correlations. The effect of such competition on the low-lying spectra is studied in N=Z odd-odd nuclei by using a three-body model; it is shown that the inversion of the 0+ and 1+ states near the ground state, and the strong magnetic dipole transitions between them, can be considered as a clear manifestation of strong T=0 pairing correlations in these nuclei. The effect of T=0 pairing correlations is also quite evident if one studies charge-changing transitions. The Gamow-Teller (GT) states in N=Z+2 nuclei are studied here by using self-consistent HFB+QRPA calculations in which the T=0 pairing interaction is taken into account. Strong GT states are found, near the ground state of daughter nuclei; these are compared with available experimental data from charge-exchange reactions, and such comparison can pinpoint the value of the strength of the T=0 interaction. Pair transfer reactions are eventually discussed: while two-neutron transfer has been long proposed as a tool to measure the T=1 superfluidity in the nuclear ground states, the study of deuteron transfer is still in its infancy, despite its potential interest in revealing effects coming from both T=1 and T=0 interactions.Comment: Paper submitted to Physica Scripta for inclusion in the Focus Issue entitled "Focus Issue on Nuclear Structure: Celebrating the 75 Nobel Prize" (by A. Bohr and B.R. Mottelson). arXiv admin note: text overlap with arXiv:nucl-th/0512021 by other author

    Monetary Equilibria in a Cash-in-Advance Economy with Incomplete Financial Markets

    Get PDF
    The general equilibrium model with incomplete financial markets (GEI) is extended by adding fiat money, fiscal and monetary policy and a cash-in-advance constraint. The central bank either pegs the interest rate or money supply while the fiscal authority sets a Ricardian or a non-Ricardian fiscal plan. We prove the existence of equilibria in all four scenarios. In Ricardian economies, the conditions required for existence are not more restrictive than in standard GEI. In non-Ricardian economies, the sufficient conditions for existence are more demanding. In the Ricardian economy, neither the price level nor the equivalent martingale measure are determinate.Money, Incomplete Markets, Fiscal Policy, Indeterminacy

    Monetary Equilibria in a Cash-in-Advance Economy with Incomplete Financial Markets

    Get PDF
    The general equilibrium model with incomplete financial markets (GEI) is extended by adding fiat money, fiscal and monetary policy and a cash-in-advance constraint. The central bank either pegs the interest rate or money supply while the fiscal authority sets a Ricardian or a non-Ricardian fiscal plan. We prove the existence of equilibria in all four scenarios. In Ricardian economies, the conditions required for existence are not more restrictive than in standard GEI. In non-Ricardian economies, the sufficient conditions for existence are more demanding. In the Ricardian economy, neither the price level nor the equivalent martingale measure are determinate.Money, incomplete markets, fiscal policy, indeterminacy

    Black hole evaporation based upon a q-deformation description

    Full text link
    A toy model based upon the qq-deformation description for studying the radiation spectrum of black hole is proposed. The starting point is to make an attempt to consider the spacetime noncommutativity in the vicinity of black hole horizon. We use a trick that all the spacetime noncommutative effects are ascribed to the modification of the behavior of the radiation field of black hole and a kind of q-deformed degrees of freedom are postulated to mimic the radiation particles that live on the noncommutative spacetime, meanwhile the background metric is preserved as usual. We calculate the radiation spectrum of Schwarzschild black hole in this framework. The new distribution deviates from the standard thermal spectrum evidently. The result indicates that some correlation effect will be introduced to the system if the noncommutativity is taken into account. In addition, an infrared cut-off of the spectrum is the prediction of the model.Comment: 13 pages, 2 figure

    Chemoviscosity modeling for thermosetting resin systems, part 3

    Get PDF
    A new analytical model for simulating chemoviscosity resin has been formulated. The model is developed by modifying the well established Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By introducing a relationship between the glass transition temperature (T sub g (t)) and the degree of cure alpha(t) of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature-dependent functions of the modified WLF theory parameters C sub 1 (T) and C sub 2 (T) were determined from the isothermal cure data. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data. This work represents a progress toward establishing a chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure
    • …
    corecore