161 research outputs found

    Limit theorems for sample eigenvalues in a generalized spiked population model

    Get PDF
    In the spiked population model introduced by Johnstone (2001),the population covariance matrix has all its eigenvalues equal to unit except for a few fixed eigenvalues (spikes). The question is to quantify the effect of the perturbation caused by the spike eigenvalues. Baik and Silverstein (2006) establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. In a recent work (Bai and Yao, 2008), we have provided the limiting distributions for these extreme sample eigenvalues. In this paper, we extend this theory to a {\em generalized} spiked population model where the base population covariance matrix is arbitrary, instead of the identity matrix as in Johnstone's case. New mathematical tools are introduced for establishing the almost sure convergence of the sample eigenvalues generated by the spikes.Comment: 24 pages; 4 figure

    Central limit theorems for eigenvalues in a spiked population model

    Get PDF
    In a spiked population model, the population covariance matrix has all its eigenvalues equal to units except for a few fixed eigenvalues (spikes). This model is proposed by Johnstone to cope with empirical findings on various data sets. The question is to quantify the effect of the perturbation caused by the spike eigenvalues. A recent work by Baik and Silverstein establishes the almost sure limits of the extreme sample eigenvalues associated to the spike eigenvalues when the population and the sample sizes become large. This paper establishes the limiting distributions of these extreme sample eigenvalues. As another important result of the paper, we provide a central limit theorem on random sesquilinear forms.Comment: Published in at http://dx.doi.org/10.1214/07-AIHP118 the Annales de l'Institut Henri Poincar\'e - Probabilit\'es et Statistiques (http://www.imstat.org/aihp/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore