
Title On sample eigenvalues in a generalized spiked population
model

Author(s) Bai, Z; Yao, J

Citation Journal of Multivariate Analysis, 2012, v. 106, p. 167-177

Issued Date 2012

URL http://hdl.handle.net/10722/143793

Rights

NOTICE: this is the author’s version of a work that was accepted
for publication in Journal of Multivariate Analysis. Changes
resulting from the publishing process, such as peer review,
editing, corrections, structural formatting, and other quality
control mechanisms may not be reflected in this document.
Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently
published in Journal of Multivariate Analysis, 2012, v. 106, p.
167-177. DOI: 10.1016/j.jmva.2011.10.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37965757?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


On sample eigenvalues in a generalized

spiked population model

Zhidong Bai∗ and Jianfeng Yao†

Zhidong Bai

KLASMOE, School of Mathematics and Statistics

Northeast Normal University

130024 Changchun, China

e-mail: baizd@nenu.edu.cn

Jianfeng Yao

Department of Statistics and Acturaial Science

The University of Hong Kong

Pokfulam, Hong Kong

e-mail: jeffyao@hku.hk

Abstract: In the spiked population model introduced by Johnstone

[11], the population covariance matrix has all its eigenvalues equal to

unit except for a few fixed eigenvalues (spikes). The question is to quan-

tify the effect of the perturbation caused by the spike eigenvalues. Baik

and Silverstein [5] establishes the almost sure limits of the extreme sam-

ple eigenvalues associated to the spike eigenvalues when the population

and the sample sizes become large. In a recent work [4], we have provided

the limiting distributions for these extreme sample eigenvalues. In this

paper, we extend this theory to a generalized spiked population model

where the base population covariance matrix is arbitrary, instead of the

identity matrix as in Johnstone’s case. As the limiting spectral distribu-

tion is here arbitrary, new mathematical tools, different from those in

Baik and Silverstein [5], are introduced for establishing the almost sure

convergence of the sample eigenvalues generated by the spikes.
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1. Introduction

Let (Tp) be a sequence of p × p non-random and nonnegative definite Her-

mitian matrices and let (wij), i, j ≥ 1 be a doubly infinite array of i.i.d.

complex-valued random variables satisfying

E(w11) = 0, E(|w11|2) = 1, E(|w11|4) <∞.

Write Zn = (wij)1≤i≤p,1≤j≤n, the upper-left p × n block, where p = p(n)

is related to n such that when n → ∞, p/n → y > 0. Then the matrix

Sn = 1
nT

1/2
p ZnZ

∗
nT

1/2
p can be considered as the sample covariance matrix

of an i.i.d. sample (x1, . . . ,xn) of p-dimensional observation vectors xj =

T
1/2
p uj where uj = (wij)1≤i≤p denotes the j-th column of Zn. Throughout

the paper, A1/2 stands for any Hermitian square root of an nonnegative

definite (n.n.d.) Hermitian matrix A.

Assume that the empirical spectral distribution (ESD) of Tp converges

weakly to a nonrandom probability distribution H on [0,∞). It is then

well-known that the ESD of Sn converges to a nonrandom limiting spectral

distribution (LSD) G [12, 16].

Let λn,1 ≥ · · · ≥ λn,p be the set of sample eigenvalues, i.e. the eigenvalues

of the sample covariance matrix Sn. The so-called null case corresponds

to the situation Tp ≡ Ip, so that, assuming y ≤ 1, the LSD G reduces

to the Marčenko-Pastur law with support ΓG = [ay, by] where ay = (1 −
√
y)2 and by = (1 +

√
y)2. Furthermore, the extreme sample eigenvalues

λn,1 and λn,p almost surely tend to by and ay, respectively, and the sample
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eigenvalues (λn,j) fill completely the interval [ay, by]. However, as pointed

out by Johnstone [11], many empirical data sets demonstrate a significant

deviation from this null case whereby some of the extreme sample eigenvalues

are well separated from an inner bulk interval. As a possible explanation for

this phenomenon, Johnstone proposes a spiked population model where all

eigenvalues of Tp are unit except a fixed small number of them (the spikes).

In other words, the population eigenvalues {βn,j} of Tp are

α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 1, . . . , 1︸ ︷︷ ︸
p−M

,

where M and the multiplicity numbers (nk) are fixed and satisfy n1 + · · ·+
nK = M . Clearly, this spiked population model can be viewed as a finite-

rank perturbation of the null case.

Obviously, the global LSD G of Sn is not affected by this small perturba-

tion and still converges to the Marčenko-Pastur law. However, the asymp-

totic behavior of the extreme eigenvalues of Sn is significantly different from

the null case. The fluctuation of the largest eigenvalue λn,1 in the case

of complex Gaussian variables has been recently studied in Baik et al. [6].

These authors prove a transition phenomenon: the weak limit and the scal-

ing of λn,1 are different according to its location with respect to a critical

value 1 +
√
y. In Baik and Silverstein [5], the authors consider the spiked

population model with general random variables: complex or real and not

necessarily Gaussian. For the almost sure limits of the extreme sample eigen-

values, they also find that these limits depend on the critical values 1 +
√
y

for largest sample eigenvalues, and on 1−√y for smallest ones. For example,

if there are m eigenvalues in the population covariance matrix larger than

1 +
√
y, then the m largest sample eigenvalues λn,1, . . . , λn,m will converge

to a limit above the right edge by of the limiting Marčenko-Pastur law, see

§4.1 for more details. In a recent work Bai and Yao [4], considering general
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matrix entries as in [5], we have established central limit theorems for these

extreme sample eigenvalues generated by spike eigenvalues which are out-

side the critical interval [1−√y, 1+
√
y]. Note that futher related results on

these extreme sample eigenvalues are found in Paul [14] and Onatski [13].

The spiked population model has also an extension to other random matri-

ces ensembles through the general concept of small-rank perturbations. The

goal is again to examine the effect caused on the sample extreme eigenvalues

by such perturbations. In a series of recent papers [15, 10, 9], these authors

establish several results in this vein for ensembles of formMn = Wn+n−1/2V

where Wn is a standard Wigner matrix and V a small-rank matrix.

The present work is motivated by a generalization of Johnstone’s spike

population model defined as follows. The population covariance matrix Tp

possesses two sets of eigenvalues: a small number of them, say (αk), called

generalized spikes, are well separated - in a sense to be defined later-, from

a base set (βn,i). In other words, the spectrum of Tp reads as

α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, βn,1, . . . , βn,p−M .

Therefore, this scheme can be viewed as a finite-rank perturbation of a

general population covariance matrix with eigenvalues {βn,j}. Note that here

the eigenvalues αk’s are not necessarily larger than the βn,j ’s and their exact

relationship will be defined in Section 2.

The empirical distributions generated by the eigenvalues (βn,i) will be

assumed to have a limit distribution H. Note that H is also the LSD of

Tp since the perturbation is of finite rank. Analogous to Johnstone’s spiked

population model, the LSD G of the sample covariance matrix Sn is still not

affected by the spikes. The aim of this work is to identify the effect caused

by the spikes (αk) on a particular subset of sample eigenvalues.

As demonstrated in Baik and Silverstein [5] for Johnston’s model, only
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a particular subset of the spikes {αk} will generate some sample eigenval-

ues which will converge to some limiting points outside the support of G.

However in the current generalized scheme, because this LSD G can have

an arbitrary form, the characterization of these particular spikes need new

mathematical tools than those previously introduced in [5]. This paper pro-

vide such new tools which are very different from the ones in [5]. In par-

ticular, we provide a complete characterization of those particular spikes

according to the sign of the derivatives {ψ′(αk)} where ψ is a fundamental

function introduced in §3 (though closely related to the Stieltjes transform

of G).

Let us mention that after the completion of this paper, we become aware

of two recent, unpublished and closely-related works [7] and [8]. These au-

thors consider more general perturbation models including additive and

multiplicative ones and there provide important results on point-wisely con-

vergence of extreme eigenvalues [7] as well as on their fluctuations [8]. It

is particularly remarked that several asymptotic results on the associated

eigenvectors are also established in [7]. However while in the present paper

the deformation considered can be viewed as of multiplicative type only, our

methods are completely different; moreover the distributions of the matrix

entries are more general as they are not required to obey a orthogonal or

unitary invariance as in [7] or a log-Sobolev inequality as in [8].

The remaining sections of the paper are organized as following. §2 gives

the precise definition of the generalized spiked population model. Next, we

use §3 to recall several useful results on the convergence of the ESD from

general sample covariance matrices. In §4, we examine the strong point limits

of sample eigenvalues associated to spikes. We then introduce a CLT for these

sample eigenvalues in §5 using the methodology developed in [4].
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2. Generalized spiked population model

In a generalized spiked population model, the population covariance matrix

Tp takes the form

Tp =


Σ 0

0 Vp


 ,

where Σ and Vp are nonnegative and nonrandom Hermitian matrices of

dimension M ×M and p′ × p′, respectively, where p′ = p −M . The sub-

matrix Σ has K eigenvalues α1 > · · · > αK > 0 of respective multiplicity

(nk), and Vp has p′ eigenvalues βn,1 ≥ · · · ≥ βn,p′ .

Throughout the paper, we assume that the following assumptions hold.

(a) wij , i, j = 1, 2, ... are i.i.d. complex random variables with Ew11 = 0,

E|w11|2 = 1, and E|w11|4 <∞.

(b) n = n(p) with yn = p/n→ y > 0 as n→∞.

(c) The sequence of ESD Hn of (Tp), i.e. generated by the population

eigenvalues {αk, βn,j}, weakly converges to a probability distribution

H as n→∞.

(d) The sequence (∥Tp∥) of spectral norms of (Tp) is bounded.

For any measure µ on R, we denote by Γµ the support of µ, a close set.

Definition 2.1. An eigenvalue α of the matrix Σ is called a generalized

spike eigenvalue if α /∈ ΓH .

To avoid confusion between spikes and non-spike eigenvalues, we further

assume that

(e) max
1≤j≤p′

d(βnj ,ΓH) = εn → 0,

where d(x,A) denotes the distance of a point x to a set A. Note that there

is a positive constant δ such that d(αk,ΓH) > δ, for all k ≤ K.
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The above definition for generalized spikes is consistent with Johnstone’s

original one of (ordinary) spikes, since in that case we have Hn ≡ H =

δ{1} and α /∈ ΓH simply means α ̸= 1. Throughout the paper and for any

Hermitian matrix A, we order its eigenvalues in a descending order as λA
1 ≥

λA
2 ≥ · · · .

3. Known results on the spectrum of large sample covariance

matrices

3.1. Marčenko-Pastur distributions

In this section y is an arbitrary positive constant and H an arbitrary prob-

ability measure on R+. Define on the set

C+ := {z ∈ C : ℑ(z) > 0 } ,

the map

g(s) = gy,H(s) = −1
s

+ y

∫
t

1 + ts
dH(t) , s ∈ C+. (3.1)

It is well-known ([3, Chap. 5]) that g is a one-to-one map from C+ onto itself,

and the inverse map my,H = g−1
y,H corresponds to the Stieltjes transform of a

probability measure Fy,H on [0,∞). Throughout the paper and with a small

abuse of language, we refer Fy,H as the Marčenko-Pastur (M.P.) distribution

with indexes (y,H).

This family of distributions arises naturally as follows. Consider a com-

panion matrix Sn = 1
nZ

∗
nTpZn of the sample covariance matrix Sn. The

spectra of Sn and Sn are identical except |n−p| zeros. It is then well-known

([12],[3, Chap. 5]) that under Conditions (a)-(d), the ESD of Sn converges

to the M.P. distribution Fy,H . The terminology is slightly ambiguous since

the classical M.P. distribution refers to the limit of the ESD of Sn when

Tp = Ip.
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Note that we shall always extend a function h defined on C+ to the real

axis R by taking the limits limε→0+ h(x + iε) for real x’s whenever these

limits exist. For α /∈ ΓH and α ̸= 0 define

ψ(α) = ψy,H(α) := g(−1/α) = α+ yα

∫
t

α− t
dH(t) . (3.2)

Note that this formula could be extended to α = 0 when 0 /∈ ΓH . However,

there is no much meaning for α = 0 since, as we will see below, the values

for α are related to the values of type −1/s(z) where s is some Stieltjes

transform and z ∈ C+. Therefore, the point 0 will always be excluded from

the domain of definition of ψ.

Analytical properties of Fy,H can be derived from the fundamental equa-

tion (3.2). The following lemma, due to Silverstein and Choi [17], character-

izes the close relationship between the supports of the generating measure

H and the generated M.P. distribution Fy,H .

Lemma 3.1. If λ /∈ ΓFy,H
, then my,H(λ) ̸= 0 and α = −1/my,H(λ) satisfies

i. α /∈ ΓH and α ̸= 0 (so that ψ(α) is well-defined);

ii. ψ′(α) > 0.

Conversely, if α satisfies (i)-(ii), then λ = ψ(α) /∈ ΓFy,H
.

It is then possible to determine the support of Fy,H by looking at intervals

where ψ′ > 0. As an example, Figure 1 displays the function ψ for the M.P.

distribution with indexes y = 0.3 and H the uniform distribution on the set

{1, 4, 10}. The function ψ is strictly increasing on the following intervals:

(−∞, 0), (0, 0.63), (1.40, 2.57) and (13.19, ∞). According to Lemma 3.1,

we get

Γc
Fy,H

∩ R∗ = (0, 0.32) ∪ (1.37, 1.67) ∪ (18.00, ∞).

Hence, taking into account that 0 belongs to the support of Fy,H , we have

ΓFy,H
= {0} ∪ [0.32, 1.37] ∪ [1.67, 18.00].
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We refer to Bai and Silverstein [2] for a complete account of analytical

properties of the family of M.P. distributions {Fy,H} and the maps {ψy,H}.
In particular, the following conclusions will be useful:

• when restricted to Γc
Fy,H

, ψy,H has a well-defined inverse function ψ−1
y,H :

Γc
Fy,H

→ Γc
H which is strictly increasing on each interval included into

Γc
Fy,H

;

• the function ψy,H tends to the identity function as y → 0.

3.2. Exact separation of sample eigenvalues

We need first quote two results of Bai and Silverstein [1, 2] on exact separa-

tion of sample eigenvalues. Recall the ESD’s (Hn) of (Tp), yn = p/n, and let

{Fyn,Hn} be the sequence of associated M.P. distributions. One should not

confuse the M.P. distribution {Fyn,Hn} with the ESD of Sn although both

converge to the M.P. distribution Fy,H as n→∞.

Proposition 3.1. Assume hold Conditions (a)-(d) and the following

(f) The interval [a, b] with a > 0 lies in an open interval (c, d) outside the

support of Fyn,Hn for all large n.

Then

P ( no eigenvalue of Sn appears in [a, b] for all large n ) = 1.

Roughly speaking, Proposition 3.1 states that a gap in the spectra of the

Fyn,Hn ’s is also a gap in the spectrum of Sn for large n. Moreover, under

Condition (f), we know by Lemma 3.1, that for large n,

ψ−1
yn,Hn

{[a, b]} ⊂ ψ−1
yn,Hn

{(c, d)} ⊂ Γc
Hn

.

By continuity of Fyn,Hn in its indexes, it follows that we have for large n1

ψ−1{[a, b]} = ψ−1
y,H{[a, b]} ⊂ Γc

Hn
.

1To see this let us choose a′, b′ such that c < a′ < a < b < b′ < d. We have ψ−1
n (a′) <
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In other words, it holds almost surely for large n that, ψ−1{[a, b]} contains

no eigenvalue of Tp. Let for these n, the integer in ≥ 0 be such that

Tp has exactly in eigenvalues larger than ψ−1(b) . (3.3)

Proposition 3.2. Assume Conditions (a)-(d) and (f) hold. If y[1−H(0)] ≤
1, or y[1−H(0)] > 1 but [a, b] is not contained in [0, x0] where x0 > 0 is the

smallest value of the support of Fy,H , then with in defined in (3.3) we have

P (λSn
in+1 ≤ a < b ≤ λSn

in
for all large n) = 1.

In other words, under these conditions, it happens eventually that the

numbers of sample eigenvalues {λSn
i } in both sides of [a, b] match exactly the

numbers of populations eigenvalues {αk, βn,j} in both sides of the interval

ψ−1{[a, b]}.

4. Almost sure convergence of sample eigenvalues from

generalized spikes

From (3.2) we have

ψ′(α) = 1− y

∫
t2

(α− t)2
dH(t) , ψ′′′(α) = −6y

∫
t2

(α− t)4
dH(t) .

Therefore, ψ′ is concave on any interval outside ΓH . Moreover for a discrete

distribution H, ψ′(α) tends to −∞ when α approaches the point masses of

H, see also Figure 1.

As we will see, the asymptotic behavior of the sample eigenvalues gener-

ated by a generalized spike eigenvalue α depends on the sign of ψ′(α).

ψ−1
n (a) < ψ−1

n (b) < ψ−1
n (b′) and then ψ−1(a′) < ψ−1(a) < ψ−1(b) < ψ−1(b′) in the

limits where the strict inequalities follows the fact that ψ is strictly increasing on [a′, b′].

This implies that when n is large, ψ−1
n (a′) < ψ−1(a) < ψ−1(b) < ψ−1

n (b′) and thus

ψ−1([a, b]) ⊂ ψ−1
n ([a′, b′]) ⊂ Γc

Hn
.
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Definition 4.1. We call a generalized spike eigenvalue α, a distant spike

for the M.P. law Fy,H if ψ′(α) > 0, and a close spike if ψ′(α) ≤ 0.

Recall that ψ depend on the parameters (y,H). When H is fixed, and

since by (3.2), ψ tends to the identity function as y → 0, a close spike for

a given M.P. law Fy,H becomes a distant spike for M.P. law Fy′,H for small

enough y′.

As an example, different types of spikes are displayed in Figure 2. The

solid curve corresponds to a zoomed view of ψ0.3,H of Figure 1. For F0.3,H ,

the three values α1, α2 and α5 are close spikes; each small enough α (close

to zero), or large enough α (not displayed), or a value between u and v (see

the figure) is a distant spike. Furthermore, as y decreases from 0.3 to 0.02

(dashed curve), α1, α2 and α5 become all distant spikes.

Throughout this section, for each spike eigenvalue αk, we denote by νk +

1, . . . , νk+nk the descending ranks of αk among the eigenvalues of Tp (multi-

plicities of eigenvalues are counted): in other words, there are νk eigenvalues

of Tp larger than αk and p− νk − nk less.

Theorem 4.1. Assume that the conditions (a)-(e) hold. Let αk be a gen-

eralized spike eigenvalue of multiplicity nk satisfying ψ′(αk) > 0 (distant

spike) with descending ranks νk + 1, . . . , νk + nk. Then, the nk consecutive

sample eigenvalues {λSn
i }, i = νk + 1, . . . , νk + nk converge almost surely to

ψ(αk).

Proof. By definition we have for α /∈ {αk, k = 1, . . . ,K; βn,j , j = 1, . . . , p′},

ψn(α) := ψyn,Hn(α) = α+ ynα

[
p′

p

∫
t

α− t
dHv

n(t) +
1
p

K∑

j=1

njαj

α− αj

]
, (4.1)
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where Hv
n = 1

p′
∑

j δβn,j
is the ESD of Vp. Its derivative equals

ψ′n(α) = ψ′yn,Hn
(α) = 1− yn

[
p′

p

∫
t2

(α− t)2
dHv

n(t) +
1
p

K∑

j=1

njα
2
j

(α− αj)2

]
.

(4.2)

Since ψ′(αk) > 0 and by continuity, we can always find d > c > b > a > αk

such that ψ′ > 0 on [αk, d]. Next by condition (e), the eigenvalues βn,j ’s

approach the support ΓH which is at a positive distance from the spike

eigenvalues αℓ’s. It follows that we can choose the above d > c > b > a such

that i) d < αk−1 (with the convention α0 = ∞); ii) for n large enough, none

of the βn,j ’s will appear in the interval [αk, d].

Next we claim that on [a, d], (ψn)n and (ψ′n)n converge uniformly to ψ and

ψ′, respectively. It follows that we have for all n large enough, ψ′n is positive

on [a, d] (with eventually smaller a, b, c, d), and the interval (ψ(a), ψ(d)) will

be out of the support of Fyn,Hn . Consequently, the interval [ψ(b), ψ(c)] satis-

fies the conditions of Proposition 3.2 with in = νk. Therefore, by Proposition

3.2, we have



P (λSn

νk+1 ≤ ψ(b) < ψ(c) ≤ λSn
νk
, for all large n) = 1 if νk > 0;

P (λSn
νk+1 ≤ ψ(b), for all large n) = 1 otherwise.

Therefore, it holds almost surely

lim sup
n

λSn
νk+1 ≤ ψ(b),

and finally, letting b→ αk,

lim sup
n

λSn
νk+1 ≤ ψ(αk). (4.3)

Similarly, one can prove that for e < f < αk sufficiently close to αk,



P (λSn

νk+nk+1 ≤ ψ(e) < ψ(f) ≤ λSn
νk+nk

, for all large n) = 1 if νk + nk < p,

P (λSn
νk+nk

≥ ψ(f), for all large n) = 1 otherwise.
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Letting f → αk, we have

lim inf
n

λSn
νk+nk

≥ ψ(αk). (4.4)

Thus, we proved that almost surely,

lim
n
λSn

νk+j = ψ(αk), for j = 1, · · · , nk.

The proof of Theorem 4.1 will be complete if we prove the above claim for

uniform convergence of (ψn)n and (ψ′n)n on [a, d]. For (ψn)n we have

ψn(α)− ψ(α) = yα

∫
t

α− t
dHv

n(t)− yα

∫
t

α− t
dH(t)

+
(
yn
p′

p
− y

)
α

∫
t

α− t
dHv

n(t)

+ynα
1
p

K∑

j=1

njαj

α− αj
. (4.5)

First observe that on [a, d]

inf
1≤j≤K,α∈[a,d]

|α− αj | > 0,

so that it is readily seen that the second and the third term in the r.h.s of

(4.5) above converge uniformly to 0.

For the first term, let split the measure Hv
n into two parts Hv

n,1 and Hv
n,2

according to whether the βn,j ’s are on the left side or the right side of the

interval [a, d]. For each of these sub-measures, by similar arguments as above,

the integrals

α

∫
t

α− t
dHv

n,j(t), j = 1, 2

converge pointwisely to

α

∫
t

α− t
1I{t<a}dH(t) and α

∫
t

α− t
1I{t>d}dH(t),

respectively. Note that 1I{t<a}dH(t) + 1I{t>d}dH(t) = dH(t). Moreover, the

functions

α 7→ α

∫
t

α− t
dHv

n,j(t), j = 1, 2
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are monotonic and continuous. By Dini’s theorem, the above pointwise con-

vergence is also uniform on [a, d]. This proves the uniform convergence of

(ψn)n and the proof for (ψ′n)n is similar and thus omitted. The proof of

Theorem 4.1 is complete.

Next we consider close spikes.

Theorem 4.2. Assume that the conditions (a)-(e) hold. Let αk be a gener-

alized spike eigenvalue of multiplicity nk satisfying ψ′(αk) ≤ 0 (close spike)

with descending ranks νk + 1, . . . , νk + nk. Let I be the maximal interval in

Γc
H containing αk.

i. If I has a sub-interval (uk, vk) on which ψ′ > 0 (then we take this

interval to be maximal), then the nk sample eigenvalues {λSn
j }, j =

νk + 1, . . . , νk + nk converge almost surely to the number ψ(w) where

w is one of the endpoints {uk, vk} nearest to αk ;

ii. If for all α ∈ I, ψ′(α) ≤ 0, then the nk sample eigenvalues {λSn
j },

j = νk + 1, . . . , νk + nk converge almost surely to the γ-th quantile of

G, the LSD of Sn, where γ = H(0, αk).

Proof. The proof refers to the drawing on the bottom of Figure 3.

(i). Suppose αk is a spike eigenvalue satisfying ψ′(αk) ≤ 0 and there is an

interval (uk, vk) ⊂ I on which ψ′ > 0. Without loss of generality, we can

assume αk ≤ uk, the argument of the other situation where αk > vk being

similar. According to Lemma 3.1, ψ{(uk, vk)} ⊂ Γc
Fy,H

and we claim that

ψ(uk) is a boundary point of the support of G (LSD of Sn). To see this, first

we observe that uk is finite and ψ′(uk) ≤ 0 (possibly −∞) by continuity

and the maximality of the interval (uk, vk). Thus ψ(uk) ∈ ΓG. Moreover, it

is necessarily on the boundary of ΓG, for otherwise we could find an e > 0

such that (ψ(uk), ψ(uk + e)) is in ΓG and this would imply that ψ′ ≤ 0 on
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the interval (uk, uk + e) which is clearly impossible.

Choose uk < a < b < ṽ (ṽ = min(vk, αk−1) or vk in accordance with k > 1

or not) such that (a, b) ⊂ I, by the argument used in the proof of Theorem

4.1, one can prove that



P (λSn

νk+1 ≤ ψ(a) < ψ(b) ≤ λSn
νk
, for all large n) = 1 if νk > 0;

P (λSn
νk+1 ≤ ψ(a), for all large n) = 1 otherwise.

This proves that almost surely,

lim supλSn
νk+1 ≤ ψ(uk) ≤ lim inf λSn

νk
.

On the other hand, since ψ(uk) is a boundary point of the support of G,

we know that for any ε > 0, almost surely, the number of λSn
i ’s falling into

[ψ(uk)−ε, ψ(uk)] tends to infinity since the LSD has a positive density

function on this interval. In particular, almost surely this interval

contains λSn
νk+nk+1 for large n. Therefore,

lim inf λSn
νk+nk+1 ≥ ψ(uk)− ε, a.s..

Since ε is arbitrary, we have finally proved that almost surely,

limλSn
νk+j = ψ(uk), j = 1, · · · , nk.

Thus, the proof of Conclusion (i) of Theorem 4.2 is complete.

Similarly, if the spiked eigenvalue αk is like α2, we can show that the nk

corresponding eigenvalues of Sn goes to ψ(vk).

(ii) If the spiked eigenvalues is like α5, where the gap of support of LSD

disappeared, clearly the corresponding sample eigenvalues λνk+1, . . . , λνk+nk

tend to the γ-th quantile of the LSD of Sn where

γ = 1− lim
in
νk

= H(0, αk).
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4.1. Case of Johnstone’s spiked population model

In the case of Johnstone’s model, H reduces to the Dirac mass δ1 and the

LSD G equals the Marčenko-Pastur law with ΓG = [ay, by]. Each α > 0,

α ̸= 1 is then a spike eigenvalue. The associated function ψ in (3.2) becomes

ψ(αk) = αk +
yαk

αk − 1
. (4.6)

The function ψ has the following properties, see Figure 4:

• its range equals (−∞, ay] ∪ [by,∞) ;

• ψ(1−√y) = ay , ψ(1 +
√
y) = by;

• ψ′(α) > 0 ⇔ |α− 1| > √
y.

Therefore, by Theorem 4.1, for any spike eigenvalue satisfying αk > 1 +
√
y

(large enough) or αk < 1 − √
y (small enough), there is a packet of nk

consecutive eigenvalues {λn,j} converging almost surely to ψ(αk) /∈ [ay, by].

In other words, assume there are exactly K1 spikes greater than 1+
√
y and

K2 spikes smaller than 1−√y. By Theorems 4.1 and 4.2 we conclude that

i. the N1 := n1 + . . .+nK1 largest eigenvalues {λSn
j }, j = 1, . . . , N1 tend

to their respective limits {ψ(αk)}, k = 1, . . . ,K1 ;

ii. the immediately following largest eigenvalue λSn
N1+1 tends to the right

edge by;

iii. the N2 := nK + · · · + nK−K2+1 smallest sample eigenvalues {λSn
n,p−j},

j = 0, . . . , N2−1 tend to their respective limits {ψ(αk)}, k = K, . . . ,K−
K2 + 1 ;

iv. the immediately following smallest eigenvalue λSn
p−N2

tends to the left

edge ay.

Hence we have recovered the content of Theorem 1.1 of [5].
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4.2. An example of generalized spike eigenvalues

Assume that Tp is diagonal with three base eigenvalues {1, 4, 10}, nearly p/3

times for each of them, and there are four spike eigenvalues (α1, α2, α3, α4) =

(15, 6, 2, 0.5), with respective multiplicities (nk) = (3, 2, 2, 2). The limiting

population-sample ratio is taken to be y = 0.3. The limiting population

spectrumH is then the uniform distribution on {1, 4, 10}. The support of the

limiting Marčenko-Pastur distribution F0.3,H contains two intervals [0.32,

1.37] and [1.67, 18], see §3.1. The ψ-function of (3.2) for the current case is

displayed in Figure 1. For simulation, we use p′ = 600 so that Tp has the

following 609 eigenvalues:

15, 15, 15, 10, . . . , 10︸ ︷︷ ︸
200

, 6, 6, 4, . . . , 4︸ ︷︷ ︸
200

, 2, 2, 1, . . . , 1︸ ︷︷ ︸
200

, 0.5, 0.5 .

From the table

spike αk 15 6 2 0.5

multiplicity nk 3 2 2 2

ψ′(αk) + − + −
ψ(αk) 18.65 5.82 1.55 0.29

descending ranks 1, 2, 3 204, 205 406, 407 608, 609

we see that 6 is a close spike for H while the three others are distant ones.

By Theorems 4.1 and 4.2, we know that

• the 7 sample eigenvalues λSn
j with j ∈ {1, 2, 3, 406, 407, 608, 609}

associated to distant spikes tend to 18.65, 1.55 and 0.29, respectively,

which are located outside the support of limiting distribution F0.3,H

(or G);

• the two sample eigenvalues λSn
j with j = 204, 205 associated to the

close spike 6 tend to a limit located inside the support, the γ-th quan-

tile of the limiting distribution G where γ = H(0, 6) = 2/3.
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These facts are illustrated by a simulation sample displayed in Figure 5.

5. CLT for sample eigenvalues from distant generalized spikes

Following Theorem 4.1, to any distant generalized spike eigenvalue αk, there

is a packet of nk consecutive sample eigenvalues {λSn
j : j ∈ Jk} converging to

ψ(αk) /∈ ΓG where Jk are the descending ranks of αk among the eigenvalues

of Tp (counting multiplicities). The aim of this section is to introduce a CLT

for the nk-dimensional vector

√
n{λSn

j − ψ(αk)} , j ∈ Jk.

The method of derivation is exactly the same as in Bai and Yao [4] which

considers Johnstone’s spiked population model. Therefore, we will give a

condensed description of the result and refer to Bai and Yao [4] for technical

derivations.

Let us decompose the observation vectors xj = T
1/2
p uj , j = 1, . . . , n,

where uj = (wij)1≤i≤p by blocks,

xj =


ξj

ηj


 , with ξj = Σ1/2(wij)1≤i≤M , ηj = V 1/2

p (wij)M<i≤p.

Let

X1 =
1√
n

(ξ1, · · · , ξn)M×n =
1√
n

ξ1:n, X2 =
1√
n

(η1, · · · ,ηn)p′×n =
1√
n

η1:n .

For λ /∈ ΓG, let us define the following fundamental random matrix

Rn = Rn(λ) =
1√
n
{ξ1:n(I +An)ξ∗1:n − Σtr(I +An)} , (5.1)

with

An = An(λ) = X∗
2 (λI −X2X

∗
2 )−1X2, λ /∈ ΓG.

For the statement of our result, we first need to find the limit distribution

of the sequence {Rn(λ)}. These limit distributions are given in Propositions
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3.1 and 3.2 of [4] for the real and complex cases respectively. To ease the

reading of the paper, let us give a brief summary. We have for λ /∈ ΓG,

i. if the variables (wij) are real-valued, the random matrix Rn(λ) con-

verges weakly to a symmetric random matrix R(λ) = (Rij(λ)) with

zero-mean Gaussian entries having an explicitly known covariance func-

tion ;

ii. if the variables (wij) are complex-valued, the random matrix Rn con-

verges weakly to a zero-mean Hermitian random matrixR(λ) = (Rij(λ)).

Moreover, the real and imaginary parts of its upper-triangular bloc

{Rij(λ), 1 ≤ i ≤ j ≤ M} form a 2K-dimensional Gaussian vector

with an explicitly known covariance matrix.

Finally, let be the spectral decomposition of Σ,

Σ = U




α1In1 · · · 0

0
. . . 0

· · · 0 αKInK


U∗ , (5.2)

where U is an unitary matrix. Let ψk = ψ(αk) and R(ψk) be the weak Gaus-

sian limit of the sequence of matrices of random forms [Rn(ψk)]n recalled

above (in both real and complex variables case). Define

R̃(ψk) = U∗R(ψk)U ,

and

m3(ψk) =
∫

x

(ψk − x)2
dG(x).

Applying the method introduced in [4], we have the following

Theorem 5.3. For each distant generalize spike eigenvalue, the nk-dimensional

real vector
√
n{λSn

j − ψk, j ∈ Jk} ,
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converges weakly to the distribution of the nk eigenvalues of the Gaussian

random matrix
1

1 + ym3(ψk)αk
R̃kk(ψk).

where R̃kk(ψk) is the k-th diagonal block of R̃(ψk) corresponding to the in-

dices {u, v ∈ Jk}.

It is worth noticing that the limiting distribution of such nk packed sample

extreme eigenvalues are generally non Gaussian and asymptotically depen-

dent. Indeed, the limiting distribution of a single sample extreme eigenvalue

λSn
j is Gaussian if and only if the corresponding generalized spike eigenvalue

is simple. We refer the reader to [4] for detailed examples illustrating these

same facts but for Johnstone’s model.
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Figure 1. The ψ function for the Marčenko-Pastur distribution F0.3,H with H the uniform
distribution on the set {1, 4, 10}. Blue points indicate intervals where ψ′ > 0. Singular
points of ψ are indicated as vertical lines corresponding to the support of H. On the left,
the support set of F0.3,H (except the point 0) and its complementary set are indicated as
magenta and blue segments respectively.
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Figure 2. A zoomed view of the ψ functions for the Marčenko-Pastur distribution F0.3,H

(solid curve) and F0.02,H (dashed curve) with H the uniform distribution on the set
{1, 4, 10}. The three points α1, α2 and α5 are close spikes for F0.3,H where ψ′

0.3,H ≤ 0.
They become all distant spikes for F0.02,H as ψ′

0.02,H > 0.
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Figure 3. Illustrating (top to bottom) the proofs of Theorems 4.1 and 4.2.
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Figure 4. The function α 7→ ψ(α) = α + yα/(α − 1) which maps a spike eigenvalue α
to the limit of an associated sample eigenvalue in Johnstone’s spiked population model.
Figure with y = 1

2
; [1∓√y] = [0.293, 1.707]; [(1∓√y)2] = [0.086, 2.914] .
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(a) 609 sample eigenvalues
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(b)  zoomed view  on [5,7]
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Figure 5. An example of p = 609 sample eigenvalues (a), and two zoomed
views (b) and (c) on [5,7] and [0,2] respectively. The limiting distribution of the
ESD has support [0.32, 1.37] ∪ [1.67, 18.00]. The 9 sample eigenvalues {λSn

j , j =
1, 2, 3, 204, 205, 406, 407, 608, 609 } associated to the spikes are marked with a blue point.
Gaussian entries.


