27,314 research outputs found

    Modeling Heterogeneous Network Interference Using Poisson Point Processes

    Full text link
    Cellular systems are becoming more heterogeneous with the introduction of low power nodes including femtocells, relays, and distributed antennas. Unfortunately, the resulting interference environment is also becoming more complicated, making evaluation of different communication strategies challenging in both analysis and simulation. Leveraging recent applications of stochastic geometry to analyze cellular systems, this paper proposes to analyze downlink performance in a fixed-size cell, which is inscribed within a weighted Voronoi cell in a Poisson field of interferers. A nearest out-of-cell interferer, out-of-cell interferers outside a guard region, and cross-tier interference are included in the interference calculations. Bounding the interference power as a function of distance from the cell center, the total interference is characterized through its Laplace transform. An equivalent marked process is proposed for the out-of-cell interference under additional assumptions. To facilitate simplified calculations, the interference distribution is approximated using the Gamma distribution with second order moment matching. The Gamma approximation simplifies calculation of the success probability and average rate, incorporates small-scale and large-scale fading, and works with co-tier and cross-tier interference. Simulations show that the proposed model provides a flexible way to characterize outage probability and rate as a function of the distance to the cell edge.Comment: Submitted to the IEEE Transactions on Signal Processing, July 2012, Revised December 201

    Eigen-Inference for Energy Estimation of Multiple Sources

    Full text link
    In this paper, a new method is introduced to blindly estimate the transmit power of multiple signal sources in multi-antenna fading channels, when the number of sensing devices and the number of available samples are sufficiently large compared to the number of sources. Recent advances in the field of large dimensional random matrix theory are used that result in a simple and computationally efficient consistent estimator of the power of each source. A criterion to determine the minimum number of sensors and the minimum number of samples required to achieve source separation is then introduced. Simulations are performed that corroborate the theoretical claims and show that the proposed power estimator largely outperforms alternative power inference techniques.Comment: to appear in IEEE Trans. on Information Theory, 17 pages, 13 figure

    Asymptotic properties of eigenmatrices of a large sample covariance matrix

    Full text link
    Let Sn=1nXnXnS_n=\frac{1}{n}X_nX_n^* where Xn={Xij}X_n=\{X_{ij}\} is a p×np\times n matrix with i.i.d. complex standardized entries having finite fourth moments. Let Yn(t1,t2,σ)=p(xn(t1)(Sn+σI)1xn(t2)xn(t1)xn(t2)mn(σ))Y_n(\mathbf {t}_1,\mathbf {t}_2,\sigma)=\sqrt{p}({\mathbf {x}}_n(\mathbf {t}_1)^*(S_n+\sigma I)^{-1}{\mathbf {x}}_n(\mathbf {t}_2)-{\mathbf {x}}_n(\mathbf {t}_1)^*{\mathbf {x}}_n(\mathbf {t}_2)m_n(\sigma)) in which σ>0\sigma>0 and mn(σ)=dFyn(x)x+σm_n(\sigma)=\int\frac{dF_{y_n}(x)}{x+\sigma} where Fyn(x)F_{y_n}(x) is the Mar\v{c}enko--Pastur law with parameter yn=p/ny_n=p/n; which converges to a positive constant as nn\to\infty, and xn(t1){\mathbf {x}}_n(\mathbf {t}_1) and xn(t2){\mathbf {x}}_n(\mathbf {t}_2) are unit vectors in Cp{\Bbb{C}}^p, having indices t1\mathbf {t}_1 and t2\mathbf {t}_2, ranging in a compact subset of a finite-dimensional Euclidean space. In this paper, we prove that the sequence Yn(t1,t2,σ)Y_n(\mathbf {t}_1,\mathbf {t}_2,\sigma) converges weakly to a (2m+1)(2m+1)-dimensional Gaussian process. This result provides further evidence in support of the conjecture that the distribution of the eigenmatrix of SnS_n is asymptotically close to that of a Haar-distributed unitary matrix.Comment: Published in at http://dx.doi.org/10.1214/10-AAP748 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pegasus: A New Hybrid-Kinetic Particle-in-Cell Code for Astrophysical Plasma Dynamics

    Full text link
    We describe Pegasus, a new hybrid-kinetic particle-in-cell code tailored for the study of astrophysical plasma dynamics. The code incorporates an energy-conserving particle integrator into a stable, second-order--accurate, three-stage predictor-predictor-corrector integration algorithm. The constrained transport method is used to enforce the divergence-free constraint on the magnetic field. A delta-f scheme is included to facilitate a reduced-noise study of systems in which only small departures from an initial distribution function are anticipated. The effects of rotation and shear are implemented through the shearing-sheet formalism with orbital advection. These algorithms are embedded within an architecture similar to that used in the popular astrophysical magnetohydrodynamics code Athena, one that is modular, well-documented, easy to use, and efficiently parallelized for use on thousands of processors. We present a series of tests in one, two, and three spatial dimensions that demonstrate the fidelity and versatility of the code.Comment: 27 pages, 12 figures, accepted for publication in Journal of Computational Physic

    New Complexity Results and Algorithms for the Minimum Tollbooth Problem

    Full text link
    The inefficiency of the Wardrop equilibrium of nonatomic routing games can be eliminated by placing tolls on the edges of a network so that the socially optimal flow is induced as an equilibrium flow. A solution where the minimum number of edges are tolled may be preferable over others due to its ease of implementation in real networks. In this paper we consider the minimum tollbooth (MINTB) problem, which seeks social optimum inducing tolls with minimum support. We prove for single commodity networks with linear latencies that the problem is NP-hard to approximate within a factor of 1.13771.1377 through a reduction from the minimum vertex cover problem. Insights from network design motivate us to formulate a new variation of the problem where, in addition to placing tolls, it is allowed to remove unused edges by the social optimum. We prove that this new problem remains NP-hard even for single commodity networks with linear latencies, using a reduction from the partition problem. On the positive side, we give the first exact polynomial solution to the MINTB problem in an important class of graphs---series-parallel graphs. Our algorithm solves MINTB by first tabulating the candidate solutions for subgraphs of the series-parallel network and then combining them optimally
    corecore